「システム制御入門」正誤表

2刷の正誤表 (2022/1/8)

p.39	古	TH St.	÷□	
$P_{0.39}$ 振幅特性 2 行目根号内第 2 $P_{0.39}$ 振幅特性 3 行目根号内第 2 $P_{0.39}$ 振幅特性 3 行目根号内第 2 $P_{0.39}$ 振幅特性 3 行目根号内第 2 $P_{0.39}$ 位相特性式展開 2 行目分子 $P_{0.39}$ 位相特性式展開 3 行目分子 $P_{0.39}$ 位相特性式展開 3 行目分子 $P_{0.39}$ 亿相特性式展開 3 行目分子 $P_{0.39}$ $P_{0.39}$ 亿相特性式展開 3 行目分子 $P_{0.39}$	頁	場所	誤	正
eta 原稿特性 3 行目根号内第 2 -1 $+1$ (符号変更) 項 -39 位相特性式展開 2 行目分子 $-K$ $+K$ (符号変更) -59 の 43 付割の E_1 -1 (符号変更) -55 の 4.3 -1 (符号変更) -55 の 4.4 -1 (前の E_1 -1 (符号変更) -55 の 4.5 -1 -1 (符号変更) -55 の 4.5 -1 -1 (符号変更) -55 の 4.5 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 (69 -1 -1 -1 (69 -1 (69 -1 -1 (69	_			*
p.39 振幅特性 3 行目根号内第 2 -1 +1 (符号変更) p.39 位相特性式展開 2 行目分子 -K +K (符号変更) p.55 図 4.3 右側の E₁ E₂ (添え字の変更) p.55 図 4.4 右側の E₁ E₂ (添え字の変更) p.55 図 4.5 G₃G₄ の左側の矢印の上に E₂ を加筆 p.58 図 3 右側の E₁ E₂ (添え字の変更) p.73 下から 1 行目図 6.1 のキャブション ボード線図 ボード線図 (K = 1 の場合) p.76 下から 1 行目図 6.2 のキャブション ボード線図 ボード線図 (K = 1 の場合) p.78 図 6.3(a)(b) の横軸 0.1,1,10 0.01,0.1,1,10,100 p.82 4 行目 時定数の説明 入力変化に対する応答が大きい、 p.83 下から 1 行目図 7.1 のキャブション ボード線図 ボード線図 (K = 1 の場合) p.87 上から 4 行目 ∞mの説明 最小値 最小値を与える角周波数 p.90 7.2 の問題文中 一次進み要素 位相進み要素 p.141 土から 7 行目 位相遅れ補償 位相進み補償 p.142 式 11.16 右辺第 2 項 e ^{Ls} e ^{-Ls} p.147 例題 11.1 伝達関数 「大(2) の前 ブロック (Kc) p.148 図 11.9 加算点 (○) の後 ブロック (1+7元(s)) の前 ブロック (Kc) p.148	p.39	振幅特性 2 行目根号内第 2	{-	{+ (符号変更)
□ 項		項		
p.39 位相特性式展開 2 行目分子 $-K$ $+K$ (符号変更) p.39 位相特性式展開 3 行目分子 1 -1 (符号変更) p.55 図 4.3 右側の E_1 E_2 (添え字の変更) p.55 図 4.5 G_3G_4 の左側の矢印の上に E_2 を加筆 p.58 図 3 右側の E_1 E_2 (添え字の変更) p.73 下から 1 行目図 6.1 のキャブション ボード線図 ボード線図 ($K = 1$ の場合) p.76 下から 1 行目図 6.2 のキャブション ボード線図 ボード線図 ($K = 1$ の場合) p.78 図 6.3(a)(b) の横軸 0.1, 1, 10 0.01, 0.1, 1, 10, 100 p.82 4 行目 時定数の説明 入力変化に対する応答が大きい。 応答が遅い。 p.83 下から 1 行目図 7.1 のキャブション ボード線図 ボード線図 ($K = 1$ の場合) p.87 上から 4 行目 ω_m の説明 最小値 最小値を与える角周波数 p.90 7.2 の問題文中 一次進み要素 位相進み要素 p.134 式 11.3 $\frac{E(s)}{R(s)}$ の説明 $\frac{K}{s(1+0.05s)}$ ($K = 1$) p.147 上から 7 行目 位相遅れ補償 位相進み補償 p.148 図 11.9 $\frac{K}{s(1+0.05s)}$ ($K = 1$) $\frac{K}{s(1+0.05s)}$ ($K = 1$) p.148 図 11.10 G	p.39	振幅特性3行目根号内第2	-1	+1 (符号変更)
$p.39$ 位相特性式展開 3 行目分子 1 -1 (符号変更) $p.55$ 図 4.3 右側の E_1 E_2 (添え字の変更) $p.55$ 図 4.4 右側の E_1 E_2 (添え字の変更) $p.55$ 図 4.5 G_3G_4 の左側の矢印の上に E_2 を加筆 E_2 (添え字の変更) $p.58$ 図 $p.58$ 図 $p.59$		項		
$p.55$ 図 4.3 右側の E_1 E_2 (添え字の変更) $p.55$ 図 4.4 右側の E_1 E_2 (添え字の変更) $p.55$ 図 4.5 G_3G_4 の左側の矢印の上に E_2 を加筆 $p.58$ 図 3 右側の E_1 E_2 (添え字の変更) $p.58$ 図 3 右側の E_1 E_2 (添え字の変更) $p.73$ 下から 1 行目図 6.1 のキャ ボード線図 ボード線図 ($K=1$ の場か) $p.76$ 下から 1 行目図 6.2 のキャ ボード線図 ボード線図 ($K=1$ の場合) $p.78$ 図 6.3 (a)(b) の横軸 $0.1,1,10$ $0.01,0.1,1,10,100$ $0.1,10,10,10,10,10$ $0.1,10,10,10,10,10,10,10,10$ $0.1,10,10,10,10,10,10,10,10,10,10,10,10,10$	p.39	位相特性式展開 2 行目分子	-K	+K (符号変更)
$P_0.55$ 図 4.4 右側の E_1 E_2 (添え字の変更) $P_0.55$ 図 4.5 E_2 (添え字の変更) $P_0.55$ 図 4.5 E_2 (添え字の変更) $P_0.55$ 図 $P_0.55$ $P_0.5$	p.39	位相特性式展開 3 行目分子	1	-1 (符号変更)
$P_0.55$ 図 4.5 $P_0.55$ 図 3 $P_0.55$	p.55	図 4.3	右側の E_1	E_2 (添え字の変更)
$egin{array}{cccccccccccccccccccccccccccccccccccc$	p.55	☑ 4.4	右側の E_1	E_2 (添え字の変更)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.55	図 4.5	G_3G_4 の左側の矢印の上に	E_2 を加筆
	p.58	図 3	右側の E_1	E_2 (添え字の変更)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.73	下から 1 行目図 6.1 のキャ	ボード線図	ボード線図($K=1$ の場
		プション		合)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	p.76	下から 1 行目図 6.2 のキャ	ボード線図	ボード線図($K=1$ の場
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		プション		合)
$p.83$ 下から 1 行目図 7.1 のキャ ボード線図 ボード線図 $(K=1)$ の場分 7 ション 合) $p.87$ 上から 4 行目 ω_m の説明 最小値 最小値を与える角周波数 $p.90$ 7.2 の問題文中 一次進み要素 位相進み要素 $p.134$ 式 11.3 $\frac{E(s)}{R(s)}$ の説明 一巡伝達関数 $\frac{1}{1+-\frac{1}{2}}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大 $\frac{1}{2}$ 大 $\frac{1}{2}$ (七月 $\frac{1}{2}$ 大	p.78	図 6.3(a)(b) の横軸	0.1, 1, 10	0.01, 0.1, 1, 10, 100
$p.83$ 下から 1 行目図 7.1 のキャ ボード線図 ボード線図($K=1$ の場合) $7 > 9 > 2 > 2$ 合) $p.87$ 上から 4 行目 ω_m の説明 最小値 最小値を与える角周波数 $p.90$ 7.2 の問題文中 一次進み要素 位相進み要素 $p.134$ 式 11.3 $\frac{E(s)}{R(s)}$ の説明 一巡伝達関数 $\frac{1}{1+-22}$ $p.142$ 式 11.16 右辺 第 2 項 $\frac{e^{Ls}}{e^{-Ls}}$ $p.147$ 上から 7 行目 位相遅れ補償 位相進み補償 $p.147$ 例題 11.1 伝達関数 $\frac{K}{s(1+0.05s)}$ $\frac{K}{s(1+0.05s)}$ $(K=1)$ $p.148$ 図 11.9 加算点 (〇) の後 ブロック $\frac{1+T_2(s)}{1+T_1(s)}$ の前 ブロック K_c を追加 $p.148$ 図 11.10 $G_p(s)$ $K_cG_p(s)$ $g.148$ 図 $g.11.11$ $g.11$ 0 $g.11$ 1	p.82	4 行目 時定数の説明	入力変化に対する応答が大	応答が遅い.
			きい.	
$p.87$ 上から 4 行目 ω_m の説明 最小値 最小値を与える角周波数 $p.90$ 7.2 の問題文中 一次進み要素 位相進み要素 $p.134$ 式 11.3 $\frac{E(s)}{R(s)}$ の説明 一巡伝達関数 $\frac{1}{1+-2000000000000000000000000000000000000$	p.83	下から 1 行目図 7.1 のキャ	ボード線図	ボード線図($K=1$ の場
$p.90$ 7.2 の問題文中 一次進み要素 位相進み要素 $p.134$ 式 11.3 $\frac{E(s)}{R(s)}$ の説明 一巡伝達関数 $\frac{1}{1+-3}$ $\frac{1}{1+-3}$ $\frac{E(s)}{R(s)}$ の説明 $\frac{1}{1+-3}$ $\frac{1}{1+-3}$ $\frac{E(s)}{R(s)}$ の説明 $\frac{1}{1+-3}$ $\frac{1}{1+3}$ $\frac{E(s)}{E(s)}$ $E(s$		プション		合)
$p.134$ 式 11.3 $\frac{E(s)}{R(s)}$ の説明 一巡伝達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{1}{1+-200}$ (元達関数 $\frac{K}{s(1+0.05s)}$ ($K=1$) $p.147$ 例題 11.1 (元達関数 $\frac{K}{s(1+0.05s)}$ の前 $\frac{K}{s(1+0.05s)}$ ($K=1$) $p.148$ 図 11.9 加算点 (〇) の後 ブロック $\frac{1+T_2(s)}{1+T_1(s)}$ の前 ブロック K_c を追加 $p.148$ 図 11.10 $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $p.148$ 図 11.11 中(2 か所) $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $p.148$ 図 11.12 K K_c K_c $p.149$ 図 11.13 K K_c K_c F_c	p.87	上から 4 行目 ω_m の説明	最小値	最小値を与える角周波数
$p.142$ 式 11.16 右辺 第 2 項 e^{Ls} e^{-Ls} e^{-Ls} $p.147$ 上から 7 行目 位相遅れ補償 位相進み補償 m 例題 11.1 伝達関数 m	p.90	7.2 の問題文中	一次進み要素	位相進み要素
$p.142$ 式 11.16 右辺 第 2 項 e^{Ls} e^{-Ls} e^{-Ls} $p.147$ 上から 7 行目 位相遅れ補償 位相進み補償 m 例題 11.1 伝達関数 m	p.134	式 11.3 $\frac{E(s)}{R(s)}$ の説明	一巡伝達関数	1 1 1 一派
p.147 上から 7 行目 位相遅れ補償 位相進み補償 $R = 1.47$ 例題 11.1 伝達関数 $R = 1.47$ の形 $R = 1.48$ 図 11.9 加算点 (〇) の後 ブロック $R = 1.48$ 図 $R = 1.49$ 図 $R = 1.49$ 図 $R = 1.49$ 区 $R = 1.49$ 区 $R = 1.49$ 区 $R = 1.49$ 下から $R = 1.49$ 下れる $R = 1.49$ 下から $R = 1.49$ 下れる $R =$	p.142	. ,	e^{Ls}	
$p.148$ 図 11.9 加算点(〇)の後 ブロック $\frac{1+T_2(s)}{1+T_1(s)}$ の前 ブロック K_c を追加 $p.148$ 図 11.10 $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $F.148$ 図 11.11 中(2 か所) $F.148$ 図 11.12 $F.149$ 図 11.13 $F.149$ 図 11.13 $F.149$ 下から $16,13$ 行目 $F.149$ 下から $16,13$ 行目 $F.149$ 下から 11 行目		上から7行目	位相遅れ補償	位相進み補償
$p.148$ 図 11.9 加算点(〇)の後 ブロック $\frac{1+T_2(s)}{1+T_1(s)}$ の前 ブロック K_c を追加 $p.148$ 図 11.10 $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $F.148$ 図 11.11 中(2 か所) $F.148$ 図 11.12 $F.149$ 図 11.13 $F.149$ 図 11.13 $F.149$ 下から $16,13$ 行目 $F.149$ 下から $16,13$ 行目 $F.149$ 下から 11 行目	p.147	例題 11.1 伝達関数	$\frac{K}{e(1\pm0.05e)}$	$\frac{K}{e(1+0.05e)}$ $(K=1)$
$p.148$ 図 11.11 中 $(2 か所)$ $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $F.148$ 図 11.12 K $F.149$ 図 11.13 $F.149$ 下から $16,13$ 行目 $F.149$ 下から $16,13$ 行目 $F.149$ 下から 11 行目 $F.149$ 下から 11 行目 $F.149$ 下から 11 行目 $F.149$ 下から	p.148	図 11.9 加算点 (○) の後		
$p.148$ 図 11.11 中 $(2 か所)$ $G_p(s)$ $K_cG_p(s)$ $K_cG_p(s)$ $F.148$ 図 11.12 F	p.148	図 11.10	$G_p(s)$	$K_cG_p(s)$
$p.148$ 図 11.12 K K_c $p.149$ 図 11.13 K K_c K_c $p.149$ 下から $16,13$ 行目 $K = 100$ $K_c = 100$ $p.149$ 下から 11 行目 42.25 42.54		図 11.11 中 (2 か所)		-
$p.149$ 下から $16,13$ 行目 $K=100$ $K_c=100$ $p.149$ 下から 11 行目 42.25 42.54	p.148	図 11.12		K_c
p.149 下から 11 行目 42.25 42.54	p.149	図 11.13	K	K_c
p.149 下から 11 行目 42.25 42.54		下から 16,13 行目	K = 100	
	p.149	下から 11 行目	42.25	
		下から4行目(2か所)	√	(削除)

頁	場所	誤	正
p.149	下から3行目	3.095	6.193
p.149	下から2行目	-3.095	-6.193
p.149	下から1行目	51.60	62.33
p.150	図 11.14		(削除)
p.150	図 11.14	3.095	6.193
p.150	図 11.14	-3.095	-6.193
p.150	図 11.14	51.60	62.33
p.151	上から1行目	51.60	62.33
p.151	上から3行目	$T_1 = 0.01357$	$T_1 = 0.0112$
p.151	上から4行目	$T_2 = 0.02768$	$T_2 = 0.0229$
p.151	下から 11 行目 (2 か所)		(削除)
p.151	下から 10 行目	=4.771	= 9.542
p.151	下から 9 行目	-4.771	-9.542
p.151	下から8行目	$\omega_m = 57.18$	$\omega_m = 76.18$
p.151	下から6行目	= 57.18	= 76.18
p.151	下から4行目	$T_1 = 0.01$	$T_1 = 0.0076$
p.151	下から3行目	$T_2 = 0.03$	$T_2 = 0.0228$
p.151	下から2行目	$\omega_m = 57.18$	$\omega_m = 76.18$
p.152	図 11.15	$\sqrt{}$	(削除)
p.152	図 11.15	=4.771	= 9.542
p.152	図 11.15	-4.771	-9.542
p.152	図 11.15	= 57.18	=76.18
p.154	例題 11.2 伝達関数	$\frac{K}{s(1+0.05s)}$	$\frac{K}{s(1+0.05s)} \qquad (K=1)$
p.154	下から9行目	$K \ge 100$	$K_c \ge 100$
p.154	下から 8,5 行目	K = 100	$K_c = 100$
p.155	上から 6,7,8 行目	13.8	13.9
p.155	上から7行目	比とゲイン	比と高周波数域でのゲイン
p.155	上から8行目	$\sqrt{}$	(削除)
p.155	上から 10 行目	= 2.040	=0.2042
p.155	上から 13 行目	ω_g	ω_p
p.156	図 11.16	$\sqrt{}$	(削除)
p.156	図 11.16	= 2.040	= 0.2042
p.156	図 11.16	13.8	13.9
p.178	下から9行目	$\frac{3}{2\pi}$	$\frac{3\pi}{2}$
p.195	式 (g)	$\frac{\sqrt{7}\sqrt{10}\sqrt{7}+91-1}{10}$	$\frac{\sqrt{7}\sqrt{20\sqrt{7}+81-1}}{10}$
p.195	式 (g)	$\frac{\sqrt{10\sqrt{7}+91}-1}{100}$	$\frac{\sqrt{20\sqrt{7}+81}-1}{100}$
p.195	式(h)	$\frac{\sqrt{10\sqrt{7}+91}-1}{10}$	$\frac{\sqrt{20\sqrt{7}+81}-1}{10}$
		10	10

頁	場所	誤	正
p.201	式 15.10 (3 か所)	$x \dot{x}$	x x (ベクトル)
p.214	図中 (3 か所)	右側の <i>E</i> ₁	E_2
p.214	図中(上から4個目の図)	G_2 の右側	E_2 を追加
p.225	下から7行目 第1項	$(A_1 + A_2)s^s$	$(A_1 + A_2)s^2$
p.230	下から9行目	,制御対象	であるとき
p.230	下から8行目	$G_p = \sim$	(削除)
p.231	上から 7,9 行目	K = 10	$K_c = 10$
p.231	上から 11 行目	2.3	2.4
p.231	上から 11 行目	14	15
p.231	上から 12 行目	31	30
p.231	上から 17,19 行目	5.8	5.83
p.231	上から 19 行目(2 か所)	$\sqrt{}$	(削除)
p.231	上から 20,21 行目	7.63	15.31
p.231	下から 7,6,2 行目	3.25	4.31
p.231	下から4行目	$T_1 = 0.13, T_2 = 0.76$	$T_1 = 0.096, T_2 = 0.559$
p.232	図	$\sqrt{}$	(削除)
p.232	図	7.63	15.31
p.232	図	-7.63	-15.31
p.232	図	3.25	4.31
p.232	図	5.8	5.83
p.232	図	2.3	2.4
p.232	下から7行目	,制御対象	であるとき
p.232	下から6行目	$G_p = \sim$	(削除)
p.233	上から 8,10 行目	K = 10	$K_c = 10$
p.233	上から 13 行目	1.25	1.22
p.233	下から 11 行目	比とゲイン	比と高周波数域でのゲイン
p.233	下から 10 行目	$\sqrt{}$	(削除)
p.233	下から8行目	0.013	0.1135
p.233	下から5行目	ω_g	ω_p
p.233	下から3行目	$T_1 = 769$	$T_1 = 88.11$
p.234	図	$\sqrt{}$	(削除)
p.234	図	0.013	0.1135
p.234	図	$\frac{T_2}{0.013}$	$\frac{T_2}{0.1135}$
p.234	図	769	88.11
p.234	図	$\Rightarrow 1.25$	$\Rightarrow 1$
p.244	14.2 下から 4 行目	$\frac{20\sqrt{3}+\sqrt{2}-1}{10}$	$\frac{\sqrt{2}\sqrt{20\sqrt{2}+581-1}}{10}$
p.244	14.2 下から 4 行目	$\frac{\sqrt{3}}{5\sqrt{2}}$	$\frac{\sqrt{2}\sqrt{20\sqrt{2}+581}-1}{100}$

頁	場所	誤	正
p.244	14.2 下から 1 行目	$\frac{20\sqrt{3}+\sqrt{2}-1}{10}$	$\frac{\sqrt{2}\sqrt{20\sqrt{2}+581}-1}{10}$
p.244	14.2 下から 1 行目	$\frac{\sqrt{3}}{5\sqrt{2}}$	$\frac{\sqrt{2}\sqrt{20\sqrt{2}+581}-1}{100}$
p.244	14.2 下から 1 行目	$\sqrt{6}$	$\frac{\sqrt{2}\sqrt{20\sqrt{2}+581}-1}{10}$
p.245	2,3 行目 (行列内)	$\frac{1}{r\sqrt{r}}\left(\frac{2}{\sqrt{r}+q}\right)$	$\sqrt{\frac{2}{\sqrt{r}}+q}$
p.245	2,3 行目 (行列内)	$\frac{1}{r}\left(\frac{2}{\sqrt{r}+q}\right)$	$\frac{1}{\sqrt{r}}\sqrt{\frac{2}{\sqrt{r}}+q}$
p.245	4 行目	$\frac{1}{r^2}\left(\frac{2}{\sqrt{r}+q}\right)$	$\frac{1}{r\sqrt{r}}\sqrt{\frac{2}{\sqrt{r}}+q}$
p.245	下から9行目分母2か所	b^2r^2	br^2

1刷の正誤表

頁	場所	誤	正
p.22	上から4行目	weighing function	weighting function
p.28	図 3.2 中 下から 3 行目	位相が ϕ ずれて	位相が $ heta$ ずれて
p.49	脚注	u(t)	u(t) = 0 (t < 0), u(t) =
			$1 (t \ge 0)$
p.50	式 4.16 の第 1 項の分子	A_{1k}	A_k
p.50	式 4.16 の第 2 項の分子	A_{l+1}	$A_{l+1}s + A_{l+2}$
p.61	下から 11 行目	位相曲線の初期値は	位相曲線の値は
p.128	上から2行目	$\frac{R(s)}{Y(s)}$	$\frac{Y(s)}{R(s)}$
p.137	式 11.13 の 1 行目の後ろか	$(s - p_1^{(p)})$	$(s-p_1^{(c)})$
	ら 2 番目の項		
p.184	式 14.9	a_1	$-a_1$
p.185	式 14.14	a_1	$-a_1$
p.185	式 14.16	a_1	$-a_1$
p.210	上から 3 行目の実部の分子	$-K(T_1T_2\omega^2+1)$	$-K(T_1T_2\omega^2-1)$
p.210	上から 5 行目の tan ⁻¹ の	$T_1 T_2 \omega^2 + 1$	$T_1 T_2 \omega^2 - 1$
	分母		
p.212	上から 2 行目の有理化後の	$\omega^2 + 2500$	$\omega(\omega^2 + 2500)$
	分母		
p.216	上から3番目の図の加算点	+	_
	(白丸)の左下の符号		
p.222	合成後のゲイン線図	$ \begin{array}{c} 20 dB \\ 0 dB \\ \hline 0 dB \\ \hline -20 dB/dec \\ \hline \frac{1}{0.1} = 10 \frac{1}{0.02} = 50 \\ -40 dB/dec \end{array} $	$\begin{array}{c c} 20\mathrm{dB} & & & & & & & \\ \hline 20\mathrm{log}_{10}(K) & & & & & & \\ 0\mathrm{dB} & & & & & & \\ \hline & & & & & & \\ & & & & &$
p.223	上から2番目の基本要素	一次遅れ $\frac{1}{1+0.1s}$	一次進み $1+0.1s$