「物理系のための 複素幾何入門」正誤表

1刷の正誤表 (細道和夫氏の御尽力による)

頁	場所	誤	正
p.22	11,13,15,19,24,34 行目	加法群	以後用いられている用語 加
			群に統一
p.23	20 行目	$X \subset \mathbf{R}^N$ のコンパクト n 次	$X \subset \mathbf{R}^N$ をコンパクト n 次
		元多様体	元多様体
p.31	4 行目	$C_q(S^0) = \{0\}.$	$C_q(S^0) = \{0\} \ (q \ge 1).$
p.38	下から3行目	$f * X \to Y$	$f:X \to Y$
p.40	定義 1.25 の 3 行目	$f_q \circ \partial_q = \partial_q \circ f_q$	$f_{q-1} \circ \partial_q = \partial_q \circ f_q$
p.41	下から8行目	$S_q(X, \partial_q), S_q(X, Y)$	$(S_q(X), \partial_q), (S_q(X, Y), \partial_q)$
p.43	定理 1.17 の 1 行目	部分位相空間 Y の終	部分位相空間 Y の対
p.54	12 行目	$y eta^i$	$\mid y^i_eta$
p.54	下から2行目	M 上の n 次微分形式	M 上の $\frac{m}{m}$ 次微分形式
p.55	定義 1.32 の下の行	M 上の n 次微分形式	M 上の $\frac{m}{m}$ 次微分形式
p.55	下から 7,10 行目	コンパクト多様体 m 次元多	コンパクト m 次元多様体
		様体	
p.57	下から9行目	$\sigma_m \cap .\{$	$\sigma_m \cap \{$
p.71	定理 1.24 の 2 行目	互いに直行する	互いに <mark>直交</mark> する
p.81	定理 2.4 の 3 行目	z < r	$ z < \frac{1}{r}$
p.89	定義 2.5 の 1 行目	$F:D\to {f C}$	$f: D \to \mathbf{C}$
p.98	下から4行目	w-0 で最大値	w = 0 で最大値
p.103	11 行目	$z^2 = \sqrt[n]{-1 - (z^1)^k}$	$z^2 = \sqrt[k]{-1 - (z^1)^k}$
p.103	11,16 行目	$(j=0,1,\cdots,k)$	$(j=0,1,\cdots,\frac{k-1}{})$
p.104	8 行目	$\sqrt[n]{-1-(z^1)^k-(z^2)^k}$	$\sqrt[k]{-1-(z^1)^k-(z^2)^k}$
p.104	9 行目	$(j=0,\cdots,k)$	$(j=0,1,\cdots,k-1)$
p.129	(3.86) 式		(3,0) 成分についての恒
			等式 $\nabla_i R_{jk}^{(\alpha)} - \nabla_j R_{ik}^{(\alpha)} + $
			$ abla_k R_{ij}^{(lpha)} = 0$ を加える。
p.133	8 行目	$\tilde{\sigma}_2(M-D_i(\sigma)) \succeq$	$\tilde{\sigma}_{i+1}(M-D_i(\sigma))$ $\tilde{\sigma}^{i}$
p.138	定義 3.10 の 1 行目	$\pi_E: F \to M$	$\pi_E: \mathbf{E} \to M$
p.149	9 行目	$lpha_{(2,0)}$ は $\overline{\partial}lpha_{(0,2)}=0$ を満た	$lpha_{(2,0)}$ は $\overline{\partial}lpha_{(2,0)}=0$ を満た
		す	す
p.178	下から2行目	$\overline{\partial}^* = (d\overline{z^i} \wedge) \partial_{\overline{i}}$	$\overline{\partial} = (d\overline{z^i} \wedge) \partial_{\overline{i}}$
p.191	下から 1,2 行目	$(X_0:X_1:X_3)$	$(X_1:X_2:X_3)$
p.201	(4.53) 式 1 行目	$H^1(M, \mathcal{O}(T'M))$	$H^1(M, \mathcal{O}(T'M))$
p.203	18 行目		一般の種数1のリーマン面
			Σ_1 の正則自己同型は平行移
			動以外に反転 $z \rightarrow -z$ も存
			在する。

p.212 下かり	ら 4 行目	$y = \frac{d\mathcal{P}}{d}(z;\tau)$	$y = \frac{d\mathcal{P}}{dz}(z;\tau)$
-------------	--------	--------------------------------------	---------------------------------------

p.203 18 行目の訂正についての補足

この点は、私が4章で見落としていた結構重大な点です。この反転の自己同型は $\mathbf{Z}/(2\mathbf{Z})$ に同型な自己同型群として一般の楕円曲線 $y^2=4x^3-g_2(\tau)x-g_3(\tau)$ に $(x,y)\to(x,-y)$ として作用します $(x=\mathcal{P}(z;\tau),y=\frac{d\mathcal{P}}{dz}(z;\tau))$ と $\mathcal{P}(z;\tau)=\mathcal{P}(-z;\tau)$ である事からわかる)。この事から一般の楕円曲線は常に自己同型群 $\mathbf{Z}/(2\mathbf{Z})$ を持つことになります。従って楕円曲線の複素構造のモジュライ空間は、図 4.6 で図示されたオービフォールドの各点に $\mathbf{Z}/(2\mathbf{Z})$ を付与したオービフォールドとなります。よって、図 4.6 で図示されたオービフォールドのオービフォールドオイラー数は

$$(2-3+\frac{1}{2}+\frac{1}{3})=-\frac{1}{6},$$

となりますが楕円曲線の複素構造のモジュライ空間のオイラー数はこれに $\frac{1}{2}$ を掛けた $-\frac{1}{12}$ となります。この結果は、1 点付きの種数 1 のリーマン面の複素構造のモジュライ空間 $\mathcal{M}_{1,1}$ のオービフォールドオイラー数 $\chi_{\rm orb}(\mathcal{M}_{1,1})$ を (4.63) 式を用いて計算する事からも得られます。興味のある方はチャレンジしてみてください。