「ナビゲーションベクトル解析」正誤表

3刷の正誤表 (2025.10.20)

頁	場所	誤	正
P.102	式 (7.8)	\widetilde{h}_3 (2 箇所)	h_3
P.102	式 (7.9)	\widetilde{h}_1 (2 箇所)	h_1
P.102	式 (7.10)	\widetilde{h}_2 (2 箇所)	h_2
P.102	12 行目	\widetilde{h}_i を成分で表せば	h_i を成分で表せば
P.102	式 (7.11)	\widetilde{h}_i	h_i
P.102	18 行目	\widetilde{h}_i (2 箇所)	h_i
P.102	19 行目	$h_i = 1/\widetilde{h}_i$	$\widetilde{h}_i = 1/h_i$
P.102	式 (7.12)	$h_i = rac{1}{\widetilde{h}_i} = \cdots$	$\widetilde{h}_i = \frac{1}{h_i} = \cdots$
P.102	式 (7.13)	$\cdots = \widetilde{h}_i oldsymbol{r}_i = rac{oldsymbol{r}_i}{h_i}$	$\cdots = h_i r_i = rac{r_i}{\widetilde{h}_i}$
P.103	式 (7.14)	$h_1 \mathbf{e}_1 \qquad h_2 \mathbf{e}_2 \qquad h_3 \mathbf{e}_3$	\widetilde{h}_1e_1 \widetilde{h}_2e_2 \widetilde{h}_3e_3

2刷の正誤表 (2017.4.14)

頁	場所	誤	正
P.34	⊠ 3.4	(図の差し替え)	Z al
P.51	問 4.1:2 行目	$2t\boldsymbol{i} + t^2\boldsymbol{j} + \sqrt{3}t^3\boldsymbol{k}$	$2t\boldsymbol{i} + \sqrt{3}t^2\boldsymbol{j} + t^3\boldsymbol{k}$
P.52	☑ 4.3	(nの矢印の向きを逆にする)	
P.53	☑ 4.4	(Δt の矢印の向きを逆にする)	
P.55	問 4.2	(設問を P.57 へ移動 (「ねじれ率」の解説の後にする))	
P.65	問 1:1 行目	t = 1	t = 0
		t=2	t = 1
	最下行	$\iint_{S} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial t}\right)^{2}} dx dt$	$\iint_{S} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} dx dy$
P.76	例題 5.5:2 行目	$\nabla \times \nabla \times A$	$\nabla \times (\nabla \times A)$
	解:5行目	$\nabla \times \nabla \times A$	$\nabla \times (\nabla \times A)$
		$3xz^3$	$3xz^2$
	解:6行目	$-(4xz+9xz^2)\boldsymbol{i}$	-10xzi

頁	場所	誤	正
P.80	問 2:1 行目	$x^2 - 3xy$	$x^2 - 3yz$
	問 2:(3)	$\nabla(fA)$	$\nabla \cdot (fA)$
P.97	解:4 行目	$\nabla(u\nabla v)$	$\nabla \cdot (u \nabla v)$

1刷の正誤表 (2010.3.12)

頁	場所	誤	正
P.77	例題 5.6,解 (1),(2) 式	= 0	= 0
P.78	脚注1行目	$\nabla^2 u$	$\nabla^2 f$
P.102	式 (7.8),(7.9),(7.10),(7.11), 下から 6 行目	h_3, h_1, h_2 (各 2 箇所), h_i (4 箇所)	$\widetilde{h}_3,\widetilde{h}_1,\widetilde{h}_2,\widetilde{h}_i$
P.102	下から5行目	であるため	であるため $h_i=1/\widetilde{h}_i$ とおくと
P.102	下から4行目	$rac{1}{h_i} = m{r}_1 =$	$h_i = rac{1}{\widetilde{h}_i} = m{r}_1 =$
P.102	下から2行目	$=h_ioldsymbol{r}_i$	$=\widetilde{h}_ioldsymbol{r}_i = rac{oldsymbol{r}_i}{h_i}$
P.134	脚注1行目	Δt (2 箇所)	Δt
P.169	下図	-1-x	1-x
P.169	下から5行目	= 0 より	= 0 より
P.170	13 行目	$S = \frac{1}{2} a_y b_z - a_z b_y) \vec{i} \cdots $	$S = \frac{1}{2} \left (a_y b_z - a_z b_y) \vec{i} \cdot \cdot \cdot \right $
P.171	8, 13 行目	3種積	3 <mark>重</mark> 積