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本スライドの内容

このスライドは，次の書籍の第 2章「確率変数とその分布」
の内容に基づく．

『ガイダンス 確率統計：基礎から学び本質の理解へ』，
発行：サイエンス社，ISBN：978-4-7819-1526-5．

書籍に関する最新の情報は，以下の URLから入手することが
できます．

https://www.saiensu.co.jp

この URLは，サイエンス社が運営しているホームページ
です．
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概要

� �
このスライドでは，確率変数と分布の概念，および分布を
特徴付ける分布関数や，平均，分散について解説し，確
率変数の標準化の考え方を紹介する．このスライドでは，
(Ω,P)は確率空間を表すものとする．� �
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定義 2.1.1 (確率変数)

定義 2.1.1 (確率変数)� �
標本空間 Ω上で定義された実数値関数

X : Ω ∋ ω 7→ X (ω) ∈ R (実数全体の集合)

を Ω上の確率変数とよぶ．また，Ω上の確率 P を考える
とき，Ω上の確率変数 X のことを，確率空間 (Ω,P)上の
確率変数とよぶこともある．なお，Ω上の確率変数 X を，
{X (ω)}ω∈Ω と表すこともある．� �
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記号 2.1.1

X は Ω上の確率変数とする．
1変数関数 φ(x)に対して，Ω上の確率変数 φ(X )は

φ(X )(ω) = φ(X (ω)) (ω ∈ Ω)

と定義される．
E を実数 Rの部分集合とする．

X (ω)が E に属する根元事象 ω の集合

{ω ∈ Ω | X (ω) ∈ E}
を，{X ∈ E}と略記することもある．さらに，確率

P({ω ∈ Ω | X (ω) ∈ E})
は P(X ∈ E )と略記することもある．他にも，たとえば
P({ω ∈ Ω | a ≤ X (ω) ≤ b}) は P(a ≤ X ≤ b)と略記す
ることもある．
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記号 2.1.1 (続)

次に，X に加えて Y も Ω上の確率変数とする．このとき，2
変数関数 v(x , y)に対して，Ω上の確率変数 v(X ,Y )は

v(X ,Y )(ω) = v(X (ω),Y (ω)) (ω ∈ Ω)

と定義される．また，E に加えて F も実数 Rの部分集合とす
る．このとき，X (ω)が E に属し，同時に Y (ω)が F に属す
る根元事象 ω の集合

{ω ∈ Ω | X (ω) ∈ E かつ Y (ω) ∈ F}
を，{X ∈ E , Y ∈ F}や {X ∈ E} ∩ {Y ∈ F}と略記したり，
ベクトル表記を用いて {(X ,Y ) ∈ E × F}と略記することもあ
る．また，「任意の ω ∈ Ωで成立する確率変数に関する関係
式」については，変数部分の (ω)を略して表記することが多
い．たとえば，X (ω)Y (ω)2 > 3Y (ω) + 2 (ω ∈ Ω) という関係
式を略記する場合は，XY 2 > 3Y + 2と表記する．
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定義 2.1.2 (定義関数)と問 2.1.2

次の「定義関数」は，確率統計の様々な場面で活用する．
定義 2.1.2 (定義関数)� �
集合 A上で 1，Aの外で 0である関数

1A(x) =

{
1, x ∈ A
0, x /∈ A

を Aの定義関数とよぶ．� �
問 2.1.2 Ω = [0, 1]とし，事象 A = [0, 1/2]と
B = [1/4, 3/4]を考える．横軸に ω ∈ [0, 1]を取り，縦軸に y
を取り，次の関数の概形を描け．

(1) y = 1A(ω) + 1B(ω) (ω ∈ [0, 1]),

(2) y = 3 · 1A(ω)− 1B(ω) (ω ∈ [0, 1]).
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定義 2.1.3 (離散分布，確率関数)

離散型確率変数を定義するためには，次の「離散分布と確率
関数の概念」が必要となる．
定義 2.1.3 (離散分布，確率関数)� �
実数からなる集合 {x1, x2, · · · } (i ̸= j なら xi ̸= xj) の上
で定義された関数 p(x)に対して pk = p(xk) (k ≥ 1)とお
く．pk ≥ 0 (k ≥ 1)であり，かつ

∑
k≥1 pk = 1をみたす

とき， (
xk
pk

)
k≥1

=

(
x1 x2 · · ·
p1 p2 · · ·

)
(2.3)

を離散分布または単に分布とよび，関数 p(x) を確率関
数とよぶ．� �
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注意 2.1.1

定義 2.1.3において，pn+1 = pn+2 = · · · = 0 (nは自然数)で
あるとき，(

x1 x2 · · · xn xn+1 xn+2 · · ·
p1 p2 · · · pn 0 0 · · ·

)
で与えられる離散分布 (2.3)は，確率が 0の部分は省略して，
記号 (

xk
pk

)
1≤k≤n

=

(
x1 x2 · · · xn
p1 p2 · · · pn

)
で表すことが多い．
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定義 2.1.4 (離散型確率変数)

予め決められた有限個 (または可算無限個)の値のみを取り得
る確率変数は離散型確率変数とよばれる．
定義 2.1.4 (離散型確率変数)� �
(Ω,P)上の確率変数 X に対して，(2.3)で与えられる離散
分布が存在して，P(X = xk) = pk (k ≥ 1)が成り立つと
き，X は離散分布 (2.3)に従うといい，このことを記号

X ∼
(

x1 x2 · · ·
p1 p2 · · ·

)
(2.5)

で表す．この X のように，離散分布に従う確率変数を離
散型確率変数とよぶ．� �
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例題 2.1.1

例題 2.1.1� �
男の子 5人，女の子 3人の中から無作為に 3人を選び，この
3人の中に含まれる男の子の人数を X とする．このとき，
X が従う分布を求め，事象 A = {ω ∈ Ω | 1 ≤ X (ω) ≤ 2}
の確率 P(A)を求めよ．� �

[解答] 8人から 3人を選ぶ選び方は 8C3 = 56通り．男の子
k 人，女の子 3− k 人を選ぶ選び方は 5Ck · 3C3−k であるから，
X は離散分布(

k

5Ck · 3C3−k/8C3

)3

k=0

=

(
0 1 2 3

1/56 15/56 30/56 10/56

)
に従う．よって，
P(A) = P(X = 1) + P(X = 2) = (15 + 30)/56 = 45/56．
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例 2.1.4 (ベルヌーイ分布)

0 < p < 1, q = 1− p に対して，離散分布(
0 1
q p

)
をパラメータ pのベルヌーイ分布とよび，記号 Be(p)で表す．
成功か失敗か 2つの結果しかない試行において，成功したら
X = 1と定め，失敗したら X = 0と定める．このとき，X は
確率変数であり，成功確率を p とおくと X は Be(p)に従う．
このような試行と確率変数 X を，それぞれベルヌーイ試
行とベルヌーイ確率変数とよぶ．
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例 2.1.5 (二項分布)

自然数 n, 0 < p < 1, q = 1− p に対して，離散分布(
k

nCkp
kqn−k

)
0≤k≤n

=

(
0 1 · · · n
qn npqn−1 · · · pn

)
(2.9)

をパラメータ (n, p)の二項分布とよび，記号 B(n, p)で表す．
二項定理より，関係式

n∑
k=0

nCkp
kqn−k = (p + q)n = 1

が成り立つため，(2.9)は離散分布の条件をみたす．n = 1の
とき，二項分布 B(1, p)とベルヌーイ分布 Be(p)は一致する．
なお，「事象 Aが起こる確率が pである試行」を独立に n回繰
り返すとき，この n回の試行のうち Aが起こる回数を X とお
くと，X は二項分布 B(n, p)に従うことが知られている．こ
のことは系 3.1.1で詳しく解説する．
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例 2.1.6 (幾何分布)

0 < p < 1, q = 1− p に対して，離散分布(
k
pqk

)
k≥0

=

(
0 1 2 · · ·
p pq pq2 · · ·

)
(2.10)

をパラメータ pの幾何分布とよび，記号 Ge(p)で表す．なお，∑∞
k=0 q

k = 1/(1− q) = 1/p より，(2.10)は離散分布の条件
をみたす．「1回の試行で成功する確率が p である試行」を独
立に何回も繰り返すとき，はじめて成功するまでに失敗した
試行の回数を X とおくと，P(X = k) = pqk (k = 0, 1, · · · )が
成り立つため，X は幾何分布 Ge(p)に従う．
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例 2.1.7 (ポアソン分布)

λ > 0に対して，離散分布 k

e−λλ
k

k!


k≥0

=

(
0 1 2 · · ·

e−λ e−λλ e−λ λ2

2
· · ·

)
(2.13)

をポアソン分布とよび，記号 Po(λ)で表す．ここで，e は自
然対数の底であり，その値は e = 2.718 · · · である．

eλ =
∞∑
k=0

λk/k!

であるため，(2.13)は離散分布の条件をみたす．1年間当たり
の交通事故の件数のように，「まれにしか起こらない事象が所
定の時間内に発生する件数」を表す確率変数の分布は，ポア
ソン分布によく当てはまることが知られている．
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定義 2.1.4の離散型確率変数と対になる概念として連続
型確率変数がある．

連続型確率変数とは，生徒の身長や体重のように，取り
得る値を無限に細かくできる確率変数のことを指す．

連続型確率変数 X においては，X が一定の区間内に入る
確率を計算することが重要である．なぜなら，X の取り
得る値のすべてに正の確率を与えてしまうと，確率の総
和が無限大となってしまい，確率の公理と矛盾が生じる
からである．

連続型確率変数が一定の区間内に入る確率を数学的に表
現するためには，「密度関数の概念」が必要となる．
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定義 2.1.5 (密度関数)

定義 2.1.5 (密度関数)� �
R上の実数値関数 f (x)が 2条件

f (x) ≥ 0,

∫ ∞

−∞
f (x)dx = 1

をみたすとき，f (x) を密度関数とよぶ．f (x) が密度関数
のとき，任意の区間 [a, b]に対して

µf ([a, b]) =

∫ b

a

f (x)dx

と定義し，この µf を「f (x)から定まる分布」とよぶ．こ
のとき，f (x)を「µf の密度関数」ともよぶ．� �
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定義 2.1.6 (連続型確率変数)

連続型確率変数が区間 [a, b]内の値を取る確率は，密度関数の
区間 [a, b]上の積分で定義する．

定義 2.1.6 (連続型確率変数)� �
(Ω,P)上の確率変数 X に対して，ある密度関数 f (x)が存
在して，任意の a < bに対して

P(a ≤ X ≤ b) = µf ([a, b])

が成り立つとき，X は分布 µf に従うといい，このことを

X
pdf∼ f (x)や X ∼ µf と表す．X ∼ µf のとき，f (x)を「X

の密度関数」とよび，X を連続型確率変数とよぶ．� �
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注意 2.1.5

定義 2.1.6の設定のもとで考察する．このとき，任意の実数 c
に対して

P(X = c) = P(c ≤ X ≤ c) =

∫ c

c

f (x)dx = 0

が成り立つため，X が一点に値を取る確率は 0である．した
がって，a < bをみたす任意の実数 a, bに対して，次の関係式
が成り立つ．∫ b

a

f (x)dx = P(a ≤ X ≤ b)

= P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b).
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例 2.1.8 (一様分布)

a < bに対して，密度関数

f (x) =
1

b − a
1[a,b](x) =

{ 1

b − a
(a ≤ x ≤ b)

0 (x < a または x > b)

から定まる分布 µf を [a, b]上の一様分布とよび，記号 U(a, b)
で表す．c > 0は定数とし，A駅では c 分おきに電車が発車し
ているとする．B さんが無作為に A駅に到着するとき，到着
後に次の電車が来るまでの B さんの待ち時間を表す確率変数
は U(0, c)に従う．
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例 2.1.9 (指数分布)

λ > 0に対して，密度関数

f (x) =

{
λe−λx (x ≥ 0)
0 (x < 0)

から定まる分布 µf をパラメータ λの指数分布とよび，記号
Exp(λ)で表す．f (x)が密度関数の条件をみたすことは，∫ ∞

−∞
f (x)dx =

∫ ∞

0

λe−λxdx = −
∫ ∞

0

d

dx
e−λxdx = 1

からわかる．指数分布は，地震が起きる間隔や，製品が製造
されたときから壊れるまでの時間などを表す確率変数が従う
分布としてよく利用される．数学的には，指数分布は「単位
時間あたりに起こる確率が常に一定である無作為なイベント
の発生間隔」を表す確率変数が従う分布である．
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例 2.1.10 (正規分布)

実数 µおよび σ > 0に対して，密度関数

f (x) =
1√
2πσ2

exp

{
−(x − µ)2

2σ2

}
(x ∈ R)

から定まる分布 µf を平均 µ, 分散 σ2 の正規分布とよび，記号
N(µ, σ2)で表す．特に N(0, 1)は標準正規分布とよばれる．
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補題 2.1.2 (正規分布と線形変換)

次の補題 2.1.2から，正規分布に従う確率変数 X の線形変換
cX + d も正規分布に従うことがわかる．
補題 2.1.2 (正規分布と線形変換)� �
(Ω,P) 上の確率変数 X は正規分布 N(µ, σ2) に従うとす
る．このとき，実数 c ̸= 0 と実数 d に対して，(Ω,P) 上
の確率変数 Y = cX + d は正規分布 N(cµ + d , c2σ2) に
従う．� �
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注意 2.1.6

(Ω,P)上の確率変数 X が N(µ, σ2)に従うとする．このとき，
補題 2.1.2より，確率変数 Z = (X − µ)/σ は標準正規分布
N(0, 1)に従うことがわかり，この Z を X の標準化とよぶ．
なお，N(0, 1)に従う確率変数 Z に対する確率

p(u) = P(0 ≤ Z ≤ u) =
1√
2π

∫ u

0

e−
z2

2 dz (2.18)

の値は表 C.1を利用して計算できる．

1 p(0.12)の値を調べるとき，まず 0.12 = 0.1 + 0.02と分
解する．次に表 C.1の「縦の 0.1に対応する行」(上から
2行目)の「横の .02に対応する列」(左から 3列目)の数
値を探し，この数値が p(0.12) = 0.0478である．
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例題 2.1.3

例題 2.1.3� �
ある入学試験の点数 X は正規分布 N(51, 625) に従うと
する．

1 52点以上かつ 54点以下の割合を求めよ．

2 49点以上かつ 52点以下の割合を求めよ．

3 61点以上を合格としたときの合格率を求めよ．

ただし，表 C.1を利用すること．� �
[解答] X の標準化を Z = (X − 51)/

√
625 = (X − 51)/25と

おくと，Z は標準正規分布 N(0, 1)に従う．N(0, 1)は密度関

数 f (x) = 1√
2π
e−

x2

2 から定まる分布である．y = f (x)は y 軸
に関して左右対称な形をしていることや，「確率の加法性」を
用いて次の計算を行う．
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例題 2.1.3

1 P(52 ≤ X ≤ 54) = P(0.04 ≤ Z ≤ 0.12)であるため，

P(52 ≤ X ≤ 54) = P(0 ≤ Z ≤ 0.12)− P(0 ≤ Z ≤ 0.04)

= 0.0478− 0.0160 = 0.0318

と計算でき，求める割合は 3.18%である．
2 P(49 ≤ X ≤ 52) = P(−0.08 ≤ Z ≤ 0.04)であるため，

P(49 ≤ X ≤ 52) = P(−0.08 ≤ Z ≤ 0) + P(0 ≤ Z ≤ 0.04)

= P(0 ≤ Z ≤ 0.08) + P(0 ≤ Z ≤ 0.04)

= 0.0319 + 0.0160 = 0.0479

と計算でき，求める割合は 4.79%である．
3 P(X ≥ 61) = P(Z ≥ 0.40) = P(Z ≥ 0)− P(0 ≤ Z ≤
0.40) = 0.5− 0.1554 と計算できるため，求める合格率は
34.46%である．

27 / 52



目次 基本的な確率変数とその分布 分布関数 期待値

定義 2.2.1 (分布関数)

確率変数 X が x 以下である確率 P(X ≤ x)を，x の関数とみ
なすとき，この関数は X の分布関数とよばれ，次のように定
義される．
定義 2.2.1 (分布関数)� �
(Ω,P)上の確率変数 X と実数 x に対して，事象

{X ≤ x} = {ω ∈ Ω | X (ω) ≤ x}

の確率を

F (x) = P(X ≤ x) = P({ω ∈ Ω | X (ω) ≤ x})

と定め，x の単調増加関数 F (x)を，X の分布関数とよぶ．
なお，F (x)は FX (x)とも表す．� �28 / 52
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例 2.2.1

まず，X が離散分布 (2.3)に従うとき，次式が成り立つ．

F (x) = P(X ≤ x) =
∑
k≥1
xk≤x

p(xk) =
∑
k≥1
xk≤x

pk .

次に，X の密度関数が f (x)であるとき，

F (x) = P(X ≤ x) =

∫ x

−∞
f (t)dt

が成り立つ．よって，この f (x)が x で連続であれば，微分積
分学の基本定理より， d

dx
F (x) = f (x)が成り立つ．

なお，分布関数 F (x)がわかれば，確率関数 p(x)や密度関数
f (x)を特定できることが知られている．
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確率関数・密度関数・分布関数
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Figure: 離散型確率変数の確率関数と分布関数．
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Figure: 連続型確率変数の密度関数と分布関数．
30 / 52



目次 基本的な確率変数とその分布 分布関数 期待値

例題 2.2.1

例題 2.2.1� �
白玉が 7個，黒玉が 3個の計 10個が入った袋がある．こ
の袋の中から玉を 1個取り出し，その玉を袋に戻さずに，
さらに袋の中から玉を 1個取り出すとき，取り出した 2個
の玉のうち白玉の個数を X とおく．このとき，X の分布
関数 F (x)を求めよ．� �

[解答] まず x < 0のとき，関係式 {X ≤ x} = ∅より，
F (x) = P(∅) = 0である．次に 0 ≤ x < 1のとき，関係式

{X ≤ x} = {X = 0}

より，F (x) = P(X = 0) = (3 · 2)/(10 · 9) = 1/15である．

31 / 52



目次 基本的な確率変数とその分布 分布関数 期待値

例題 2.2.1

[解答 (続き)] また 1 ≤ x < 2のとき，関係式

{X ≤ x} = {X = 0} ∪ {X = 1}

より，

F (x) = P(X = 0) + P(X = 1) =
3 · 2
10 · 9

+ 2
7 · 3
10 · 9

=
8

15

である．最後に x ≥ 2のとき，関係式

{X ≤ x} = {X = 0} ∪ {X = 1} ∪ {X = 2}

より，F (x) = P(X = 0)+P(X = 1)+P(X = 2) = 1である．
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定義 2.3.1 (期待値)

(Ω,P)上の確率変数 X と関数 h(x)に対し，確率変数
h(X ) = {h(X (ω))}ω∈Ω の期待値 E (h(X )) を定義する．

定義 2.3.1 (期待値)� �
まず，X が離散分布(

x1 x2 · · ·
p1 p2 · · ·

)
(2.22)

に従うとき，E (h(X ))を次式で定義する．

E (h(X )) =
∞∑
k=1

h(xk)pk =
∞∑
k=1

h(xk)P(X = xk). (2.23)

� �
33 / 52



目次 基本的な確率変数とその分布 分布関数 期待値

定義 2.3.1 (期待値)

(Ω,P)上の確率変数 X と関数 h(x)に対し，確率変数
h(X ) = {h(X (ω))}ω∈Ω の期待値 E (h(X )) を定義する．

定義 2.3.1 (期待値)� �
次に，X の密度関数が f (x)であるとき，E (h(X ))を次式
で定義する．

E (h(X )) =

∫ ∞

−∞
h(x)f (x)dx . (2.24)

� �
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例 2.3.1 (平均・分散・標準偏差)

X は (Ω,P)上の確率変数とする．このとき，期待値 E (X )は
X の平均ともよばれる．また，

V (X ) = E ((X − E (X ))2)

は X の分散とよばれ，σ(X ) =
√

V (X )は X の標準偏差とよ
ばれる．V (X )と σ(X )はともに，「平均 E (X )のまわりの X
の散らばり度合い」を数値で表したものである．X が平均
E (X )に近い値を取る確率が大きいとき，V (X )は小さい．逆
に，X が平均 E (X )より離れた値を取る確率が大きいとき，
V (X )は大きい．V (X )の単位は「X の単位の 2乗」であり，
σ(X )の単位は X の単位と同じである．
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定理 2.3.1 (期待値の線形性)

期待値の定義 (定義 2.3.1)より，次の「期待値の線形性」を証
明することができる．
定理 2.3.1 (期待値の線形性)� �
X は (Ω,P) 上の確率変数とする．このとき，関数
g(x), h(x)と定数 a, b, c に対して

E (ag(X ) + bh(X ) + c) = aE (g(X )) + bE (h(X )) + c

が成り立つ．このことから，特に次式も成り立つ．

E (aX 2 + bX + c) = aE (X 2) + bE (X ) + c . (2.31)� �
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系 2.3.1 (期待値の基本不等式)

系 2.3.1 (期待値の基本不等式)� �
X は (Ω,P) 上の確率変数とする．このとき，次の
(1), (2), (3)が成り立つ．

(1) |E (X )| ≤ E (|X |),

(2) P(|X | > ε) ≤ 1

ε2
E (X 2) (ε > 0),

(3) X (ω) ≥ 0 (ω ∈ Ω) であれば E (X ) ≥ 0.� �
(2)において，X を X − µ (µ = E (X )) に置き換えると，

P(|X − µ| > ε) ≤ 1

ε2
E ((X − µ)2) =

1

ε2
V (X ) (ε > 0) (2.35)

が得られ，チェビシェフの不等式とよばれる．
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定理 2.3.3 (分散の基本公式)

定理 2.3.1を用いると，次の「分散の基本公式」を証明するこ
とができる．
定理 2.3.3 (分散の基本公式)� �
X は (Ω,P) 上の確率変数とし，a, b は定数とする．この
とき，次が成り立つ．

V (aX + b) = a2V (X ), V (X ) = E (X 2)− (E (X ))2.� �
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例 2.3.3

(Ω,P)上の確率変数 X がベルヌーイ分布 Be(p)に従うとき，
次が成り立つ．

E (X ) = 1 · p + 0 · (1− p) = p,

E (X 2) = 12 · p + 02 · (1− p) = p,

V (X ) = E (X 2)− (E (X ))2 = p(1− p).
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例 2.3.4

(Ω,P)上の確率変数 X が二項分布 B(n, p)に従うとし，
q = 1− p とおく．このとき，二項定理を用いると，E (X )は
次のように計算できる．

E (X ) =
n∑

k=0

knCkp
kqn−k = np

n∑
k=1

(n − 1)!

(k − 1)!(n − k)!
pk−1qn−k

= np
n−1∑
l=0

n−1Clp
lq(n−1)−l = np(p + q)n−1 = np (l = k − 1).
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例 2.3.4

次に E (X (X − 1))についても，二項定理を用いることで，

E (X (X − 1)) =
n∑

k=0

k(k − 1) · n!

k!(n − k)!
· pkqn−k

= n(n − 1)p2
n∑

k=2

(n − 2)!

(k − 2)!(n − k)!
pk−2qn−k

= n(n − 1)p2
n−2∑
l=0

n−2Clp
lq(n−2)−l (l = k − 2)

= n(n − 1)p2(p + q)n−2 = n(n − 1)p2

と計算できる．したがって，次が得られる．

E (X 2) = E (X (X − 1)) + E (X ) = n(n − 1)p2 + np,

V (X ) = E (X 2)− (E (X ))2 = np(1− p).
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例 2.3.5

(Ω,P)上の確率変数 X が幾何分布 Ge(p)に従うとし，
q = 1− p とおく．このとき，式変形

E (X ) =
∞∑
k=0

kpqk =
∞∑
k=0

(1 + k − 1)pqk =
∞∑
k=0

pqk +
∞∑
k=0

(k − 1)pqk

= 1− p +
∞∑
k=1

(k − 1)pqk = 1− p + q
∞∑
k=1

(k − 1)pqk−1

= 1− p + q
∞∑

k ′=0

k ′pqk ′
= 1− p + qE (X ) (k ′ = k − 1)

が成り立つ．よって，この式変形で得られた方程式

E (X ) = 1− p + qE (X )

を E (X )について解くと，E (X ) = (1− p)/p が得られる．
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例 2.3.5

次に，(k − 1)2 = k2 − 2k + 1より，次の式変形が成り立つ．

E (X 2) =
∞∑
k=0

k2pqk =
∞∑
k=0

((k − 1)2 + 2k − 1)pqk

= (−1)2p +
∞∑
k=1

(k − 1)2pqk + 2
∞∑
k=0

kpqk −
∞∑
k=0

pqk

= p + q
∞∑
k=1

(k − 1)2pqk−1 + 2E (X )− 1

= p + q
∞∑

k ′=0

(k ′)2pqk ′
+

2(1− p)

p
− 1 (k ′ = k − 1)

= qE (X 2) +
(p − 1)(p − 2)

p
.
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例 2.3.5

この式変形で得られた方程式

E (X 2) = qE (X 2) + (p − 1)(p − 2)/p

を E (X 2)について解くと，次が得られる．

E (X 2) =
(p − 1)(p − 2)

p2
, V (X ) = E (X 2)− (E (X ))2 =

1− p

p2
.

以上の計算結果をまとめると，次のとおりである．

E (X ) =
1− p

p
, V (X ) =

1− p

p2
. (2.36)
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例 2.3.6

(Ω,P)上の確率変数 X がポアソン分布 Po(λ)に従うとき，次
が得られる．

E (X ) =
∞∑
k=0

ke−λλ
k

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λ,

E (X (X − 1)) =
∞∑
k=0

k(k − 1)e−λλ
k

k!
= λ2e−λ

∞∑
k=2

λk−2

(k − 2)!
= λ2,

V (X ) = E (X 2)− (E (X ))2

= E (X (X − 1)) + E (X )− (E (X ))2 = λ.
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例 2.3.7

(Ω,P)上の確率変数 X が一様分布 U(a, b)に従うとき，多項
式の定積分を計算することで，次が得られる．

E (X ) =
1

b − a

∫ b

a

xdx =
a + b

2
,

V (X ) =
1

b − a

∫ b

a

x2dx − (E (X ))2 =
(a − b)2

12
.
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例 2.3.8

(Ω,P)上の確率変数 X は指数分布 Exp(λ)に従うとする．ロ
ピタルの定理より，次が成り立つ．

lim
x→∞

x

eλx
= lim

x→∞

1

λeλx
= 0,

lim
x→∞

x2

eλx
= lim

x→∞

2x

λeλx
= lim

x→∞

2

λ2eλx
= 0.

このことと，部分積分公式より，次が得られる．

E (X ) =

∫ ∞

0

xλe−λxdx =
[
−xe−λx

]x=∞
x=0

+

∫ ∞

0

e−λxdx =
1

λ
,

E (X 2) =

∫ ∞

0

x2λe−λxdx =
[
−x2e−λx

]x=∞
x=0

+

∫ ∞

0

2xe−λxdx =
2

λ2
,

V (X ) = E (X 2)− (E (X ))2 =
1

λ2
.
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例 2.3.9

(Ω,P)上の確率変数 Z が標準正規分布 N(0, 1)に従うとする．
0以上の整数 k に対して x2k+1e−x2/2 は x の奇関数であるた
め，次式が成り立つ．

E (Z 2k+1) =
1√
2π

∫ ∞

−∞
x2k+1e−

x2

2 dx = 0. (2.37)

また，ロピタルの定理より，次式が成り立つ．

lim
x→∞

x

e
x2

2

= lim
x→∞

1

xe
x2

2

= 0. (2.38)
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例 2.3.9

したがって，(2.37), (2.38)，および部分積分公式より，

V (Z ) = E (Z 2) =

∫ ∞

−∞
x2

1√
2π

e−
x2

2 dx =
2√
2π

∫ ∞

0

x2e−
x2

2 dx

=
2√
2π

{∫ ∞

0

e−
x2

2 dx −
[
xe−

x2

2

]x=∞

x=0

}
=

2√
2π

{√
2π

2
− 0

}
= 1

と計算できる．なお，X が正規分布 N(µ, σ2)に従うとき，X
の標準化 Z = (X − µ)/σ は N(0, 1)に従う．したがって，次
が得られる．

E (X ) = E (µ+ σZ ) = µ+ σE (Z ) = µ,

V (X ) = V (µ+ σZ ) = σ2V (Z ) = σ2.
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定義 2.3.2 (標準化)

確率変数 X の線形変換 Z = cX + d であり，平均が
E (Z ) = 0で，分散が V (Z ) = 1をみたす変換は，X の標準化
とよばれ，次のように定義される．
定義 2.3.2 (標準化)� �
(Ω,P)上の確率変数 X に対して，X の標準化を

Z (ω) =
X (ω)− E (X )√

V (X )
=

X (ω)− E (X )

σ(X )
(ω ∈ Ω)

と定義する．� �
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注意 2.3.5

(Ω,P)上の確率変数 X の標準化を Z = (X − E (X ))/σ(X )と
おく．このとき，次が成り立つ．

E (Z ) =
1

σ(X )
E (X − E (X )) =

1

σ(X )
(E (X )− E (X )) = 0,

V (Z ) =

(
1√
V (X )

)2

V (X − E (X )) =
1

V (X )
V (X ) = 1.

したがって，Z は平均が 0であり，分散が 1である．
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注意 2.3.5

例えば，X が一様分布 U(a, b)に従うとき，E (X ) = a+b
2
およ

び σ(X ) = b−a
2
√
3
であるため，任意の c < d に対して，

P(c ≤ Z ≤ d) = P

(
c ≤ X − (a + b)/2

(b − a)/(2
√
3)

≤ d

)
= P

(
c(b − a)

2
√
3

+
a + b

2
≤ X ≤ d(b − a)

2
√
3

+
a + b

2

)
=

1

b − a

∫ d(b−a)

2
√
3

+ a+b
2

c(b−a)

2
√
3

+ a+b
2

1[a,b](x) dx =
1

2
√
3

∫ d

c

1[−
√
3,
√
3](z) dz

と計算できる．この計算結果より，この Z は一様分布
U(−

√
3,
√
3)に従う．
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