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本スライドの内容

このスライドは，次の書籍の第 3章「多変量確率変数」の内
容に基づく．

『ガイダンス 確率統計：基礎から学び本質の理解へ』，
発行：サイエンス社，ISBN：978-4-7819-1526-5．

書籍に関する最新の情報は，以下の URLから入手することが
できます．

https://www.saiensu.co.jp

この URLは，サイエンス社が運営しているホームページ
です．
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概要

このスライドではまず，確率変数の独立性，同時分布，共
分散，相関係数などの概念について解説する．これらの
概念は，複数の確率変数を同時に扱う際に必要となる．
次に，カイ二乗分布と t-分布について解説する．これら
の分布は，統計的推定や統計的仮説検定を行うために必
要となる．最後に，同時分布の代表例である，多項分布
と多次元正規分布について解説する．このスライドでは，
(Ω,P)は確率空間を表すものとする．また以降では，掛け
算 a1a2 · · · ak は

∏k
i=1 ai とも表記する．
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定義 3.1.1

定義 3.1.1

X1,X2, · · · ,Xnはそれぞれ (Ω,P)上の確率変数とする．任
意の区間 I1, I2, · · · , In に対して，関係式

P(X1 ∈ I1, X2 ∈ I2, · · · ,Xn ∈ In) =
n∏

i=1

P(Xi ∈ Ii)

が成り立つとき，X1,X2, · · · ,Xn は独立であるという．こ
こで，区間 Ii は (a, b], (a, b), [a, b]等の有界区間，(−∞, a],
(a,∞), R等の無限区間の他，{a}などの 1点集合でもよ
いものとする．また，(Ω,P) 上で定義された確率変数の
(無限) 列 X1,X2, · · · が独立であるとは，任意の自然数 n
に対して X1,X2, · · · ,Xn が独立であることをいう．
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注意 3.1.1

(Ω,P)上の確率変数 X1,X2, · · · ,Xn が独立であれば，任意の区間
I1, I2, · · · , In に対し，次の関係式が成り立つ．

P(X1 ∈ I1, X2 ∈ I2, · · · , Xn−1 ∈ In−1, Xn ∈ In) =
n∏

i=1

P(Xi ∈ Ii ).

この関係式において In = Rとおけば，P(Xn ∈ R) = 1であるため，

P(X1 ∈ I1, X2 ∈ I2, · · · , Xn−1 ∈ In−1)

= P(X1 ∈ I1, X2 ∈ I2, · · · , Xn−1 ∈ In−1, Xn ∈ R)

=
n∏

i=1

P(Xi ∈ Ii ) =
n−1∏
i=1

P(Xi ∈ Ii )

が得られる．したがって，X1,X2, · · · ,Xn−1 も独立である．一般に，

X1,X2, · · · ,Xn が独立であれば，1 ≤ m < n と 1 ≤ j1 < j2 < · · · <
jm ≤ nに対し，Xj1 ,Xj2 , · · · ,Xjm も独立である．
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補題 3.1.1，注意 3.1.2

補題 3.1.1

(Ω,P)上の確率変数 X1, X2, · · · , Xn が独立であれば，1変数関
数 φ1(x), φ2(x), · · · , φn(x) に対して，(Ω,P)上の確率変数

φ1(X1), φ2(X2), · · · , φn(Xn)

も独立である．

注意 3.1.2 X , Y , Z , U, W が独立な確率変数のとき，補題 3.1.1

より，たとえば 5つの確率変数 X 2, eY , |Z | − 1, U, W 3 + 2W も
独立である．このとき，他にも，2変数関数 g(x , y), h(x , y)に対し
て，X , g(Y ,Z ), h(U,W )が独立であることもわかる．
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定理 3.1.1 (独立確率変数の和の分布 I)

定理 3.1.1 (独立確率変数の和の分布 I)

(Ω,P)上の確率変数 X と Y は独立で，どちらも整数に値を取るとす
る．このとき和 X + Y の分布は

P(X + Y = n) =
∞∑

k=−∞

P(X = k)P(Y = n − k)

で与えられる (n = 0,±1,±2, · · · )．

[証明] {X + Y = n} =
∪∞

k=−∞{X = k , Y = n − k} であるため，P の
完全加法性と X ,Y の独立性より，この事象の確率は

P(X + Y = n) = P

( ∞∪
k=−∞

{X = k , Y = n − k}

)

=
∞∑

k=−∞

P(X = k, Y = n − k) =
∞∑

k=−∞

P(X = k)P(Y = n − k).
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系 3.1.1 (独立なベルヌーイ確率変数の和の分布)

次の系 3.1.1から，独立なベルヌーイ確率変数の和は二項分布
に従うことがわかる．
系 3.1.1 (独立なベルヌーイ確率変数の和の分布)

(Ω,P)上の確率変数 X1, X2, · · · , Xn は独立で，各 Xk がベ
ルヌーイ分布 Be(p)に従うとき，X = X1 + X2 + · · ·+ Xn

は二項分布 B(n, p)に従う．
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系 3.1.1 (独立なベルヌーイ確率変数の和の分布)

[証明] nに関する数学的帰納法で証明する．q = 1− p とおく．ベルヌー
イ分布 Be(p)は二項分布 B(1, p)であるため，n = 1の場合は主張が成り
立つ．nで主張が成立すると仮定し，X = X1 + X2 + · · ·+ Xn+1 および
Y = X1 +X2 + · · ·+Xn とおく．このとき，帰納法の仮定より，Y は二項
分布 B(n, p)に従う．また，Y と Xn+1 は独立である．したがって，定理
3.1.1が適用でき，l = 1, 2, · · · , nに対して，次式が成り立つ．

P(X = l) = P(Y + Xn+1 = l) =
∞∑

k=−∞

P(Y = k)P(Xn+1 = l − k).

0と 1以外の自然数 mに対しては P(Xn+1 = m) = 0が成り立つため，

P(X = l) = P(Y = l − 1)P(Xn+1 = 1) + P(Y = l)P(Xn+1 = 0)

= (nCl−1 + nCl)p
lqn+1−l = n+1Clp

lq(n+1)−l .

次の結果も合わせると，X が二項分布 B(n + 1, p)に従うことがわかる．

P(X = 0) = P(Y = 0)P(Xn+1 = 0) = qn+1,

P(X = n + 1) = P(Y = n)P(Xn+1 = 1) = pn+1.
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定義 3.2.1

n個の確率変数を n次元ベクトルとして並べたものは n変量確率変
数とよばれ，その定義は次のとおりである．
定義 3.2.1

標本空間 Ω 上の確率変数 X1,X2, · · · ,Xn を n 次元ベクトルと
して並べた (X1,X2, · · · ,Xn)を

(X1,X2, · · · ,Xn)(ω) = (X1(ω),X2(ω), · · · ,Xn(ω)) (ω ∈ Ω)

と定義し，Ω 上の n 変量確率変数とよぶ．なお，Ω 上の確率
P を考えるとき，Ω 上の n 変量確率変数 (X1,X2, · · · ,Xn) を
(Ω,P)上の n変量確率変数とよぶこともある．
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当たり 2本，はずれ 8本からなる 10本のくじがあり，A君が
先に 1本を引き，残りの 9本のくじから B君が 2本を引くと
する．このとき，A君の当たりの本数を X，B君の当たりの
本数を Y とすると，確率 P(X = i ,Y = j)は下の表で与えら
れる．この考え方を一般化して，次頁で同時分布の定義を与
える．

Table: 10本のくじ．

X
Y

0 1 2 計

0 7/15 14/45 1/45 4/5
1 7/45 2/45 0 1/5
計 28/45 16/45 1/45 1
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定義 3.2.2 (同時分布，周辺分布)

X ,Y は (Ω,P)上の確率変数であり，X の取り得る値は相異
なる m個の実数 {x1, x2, · · · , xm}，Y の取り得る値は相異な
る n個の実数 {y1, y2, · · · , yn}とする．このとき，確率
pij = P(X = xi ,Y = yj), pi = P(X = xi), qj = P(Y = yj)

と (xi , yj)との対応を次の表で与え，2変量確率変数 (X ,Y )
の同時分布とよぶ．

X
Y

y1 y2 · · · yn 計

x1 p11 p12 · · · p1n p1
x2 p21 p22 · · · p2n p2
...

...
...

. . .
...

...
xm pm1 pm2 · · · pmn pm
計 q1 q2 · · · qn 1
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定義 3.2.2 (同時分布，周辺分布)

なお，同時分布の各行，各列の確率の合計は，それぞれ X ,Y
の離散分布を表すため，次の表を周辺分布とよぶ．

X の値 x1 x2 · · · xm 計
確率 p1 p2 · · · pm 1

Y の値 y1 y2 · · · yn 計
確率 q1 q2 · · · qn 1
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例 3.2.1 (周辺分布と独立性)

定義 3.2.2の設定のもとで考察する．このとき，X と Y が独立であ
るための必要十分条件は，関係式

P(X = xi ,Y = yj) = P(X = xi )P(Y = yj) (3, 5)

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

をみたすことである．実際に X ,Y が独立であれば，(3.5)をみたす
ことは明らかである．次に，X ,Y が (3.5)をみたせば，任意の区間
I , J に対して，式変形

P(X ∈ I ,Y ∈ J) =
∑

1≤i≤m
xi∈I

∑
1≤j≤n
yj∈J

P(X = xi ,Y = yj)

=
∑

1≤i≤m
xi∈I

P(X = xi ) ·
∑

1≤j≤n
yj∈J

P(Y = yj) = P(X ∈ I )P(Y ∈ J)

が成り立つため，X ,Y は独立である．
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定義 3.2.3 (同時密度関数，同時分布)

2変量の連続型確率変数の概念を定義するにあたり，「同時密度関数」の概
念が必要となる．
定義 3.2.3 (同時密度関数，同時分布)

2変数関数 f (x , y)が次の 2条件をみたすとき，同時密度関数とよぶ．

f (x , y) ≥ 0,

∫∫
R2

f (x , y)dxdy =

∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1. (3.6)

このとき，任意の長方形 [a1, b1]× [a2, b2]に対して

µf ([a1, b1]× [a2, b2]) =

∫∫
[a1,b1]×[a2,b2]

f (x , y)dxdy

と定義し，この µf を (同時密度関数)f (x , y)から定まる同時分布とよ
ぶ．また，f (x , y)を「µf の同時密度関数」ともよぶ．
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定義 3.2.4

定義 2.1.6の 1変量の連続型確率変数の概念を，次のように 2
変量の連続型確率変数の概念に拡張する．
定義 3.2.4

(Ω,P) 上の確率変数 X ,Y に対して，ある同時密度関数
f (x , y) が存在して，任意の長方形 [a1, b1] × [a2, b2] に対
して

P(a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2) = µf ([a1, b1]× [a2, b2])

が成り立つとき，2 変量確率変数 (X ,Y ) は f (x , y) から

定まる同時分布 µf に従うといい，(X ,Y )
pdf∼ f (x , y) や

(X ,Y ) ∼ µf と表す．また，(X ,Y ) ∼ µf のとき，f (x , y)
を「(X ,Y )の同時密度関数」とよぶ．
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例 3.2.2 (周辺密度関数と独立性)

定義 3.2.4の設定のもとで，関数 g(x)と h(y)を次式で定める
と，g(x), h(y)はそれぞれ X , Y の密度関数である．

g(x) =

∫ ∞

−∞
f (x , y)dy , h(y) =

∫ ∞

−∞
f (x , y)dx . (3.7)

実際に，任意の a < bに対し，式変形

P(a ≤ X ≤ b) = P(a ≤ X ≤ b,−∞ < Y < ∞)

=

∫∫
[a,b]×(−∞,∞)

f (x , y)dxdy

=

∫ b

a

{∫ ∞

−∞
f (x , y)dy

}
dx =

∫ b

a

g(x)dx

が成り立つため，g(x)は X の密度関数である．この g(x)を
X の周辺密度関数とよぶ．同様に h(y)は Y の密度関数であ
り，h(y)を Y の周辺密度関数とよぶ． 18 / 64
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例 3.2.2 (周辺密度関数と独立性)

また，(X ,Y )の同時密度関数 f (x , y)が条件

f (x , y) = g(x)h(y), (x , y) ∈ R2 (3.8)

をみたす場合は，任意の a < bと c < d に対して，

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫∫
[a,b]×[c,d ]

g(x)h(y)dxdy

=

{∫ b

a

g(x)dx

}
·
{∫ d

c

h(y)dy

}
= P(a ≤ X ≤ b)P(c ≤ Y ≤ d)

が成り立つため，X と Y は独立である．逆に，X と Y が独
立のとき，

f̃ (x , y) = g(x)h(y), (x , y) ∈ R2

とおけば，f̃ (x , y)は (X ,Y )の同時密度関数である．
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定義 3.2.5 (同時分布と期待値)

X と Y は (Ω,P)上の確率変数とする．このとき，2変数関数
v(x , y)に対して，確率変数 v(X ,Y )の期待値 E (v(X ,Y ))を
次のように定義する．まず，X の取り得る値が相異なる m個
の実数 {x1, x2, · · · , xm}で，Y の取り得る値が相異なる n個
の実数 {y1, y2, · · · , yn}の場合は

E (v(X ,Y )) =
m∑
i=1

n∑
j=1

v(xi , yj)P(X = xi ,Y = yj) (3.9)

と定義する．次に，(X ,Y )の同時密度関数が f (x , y)で与え
られる場合は

E (v(X ,Y )) =

∫∫
R2

v(x , y)f (x , y)dxdy (3.10)

と定義する．
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定理 3.2.1 (期待値の線形性・独立性と積の期待値)

次の定理 3.2.1は，様々な結果を導き出す重要な役割を持つ．
定理 3.2.1 (期待値の線形性・独立性と積の期待値)

X と Y は (Ω,P) 上の確率変数とする．このとき，2 変数関数
u(x , y), v(x , y)と定数 a, b, c に対して，次式が成り立つ．

E (au(X ,Y ) + bv(X ,Y ) + c) = aE (u(X ,Y )) + bE (v(X ,Y )) + c .

このことから，定数 a, b, c , d に対して，次式も成り立つ．

E (aXY + bX + cY + d) = aE (XY ) + bE (X ) + cE (Y ) + d . (3.11)

また，X と Y が独立であれば，E (XY ) = E (X )E (Y )が成り立つ．
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系 3.2.1，系 3.2.2

定理 3.2.1の前半の「期待値の線形性」に関する主張は，次の系 3.2.1のよ
うに，n個の確率変数に対する主張に拡張できる．
系 3.2.1

(Ω,P) 上の確率変数 X1,X2, · · · ,Xn と，n 個の実数 a1, a2, · · · , an に
対して，次式が成り立つ．

E (a1X1 + a2X2 + · · ·+ anXn)

= a1E (X1) + a2E (X2) + · · ·+ anE (Xn).

定理 3.2.1の最後の「独立性と積の期待値」に関する主張は，次の系 3.2.2
のように，独立な n個の確率変数に対する主張に拡張できる．
系 3.2.2

(Ω,P)上の確率変数 X1,X2, · · · ,Xn が独立であれば，

E (X1X2 · · ·Xn) = E (X1)E (X2) · · ·E (Xn).
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例題 3.2.1 (4枚のカード)

例題 3.2.1 (4枚のカード)

4枚のカード c1, c2, c3, c4 に

c1 = −2, c2 = −1, c3 = −1, c4 = 2

と数字が記入されている．まず，A君が 1枚を抜き出し，
残りの 3 枚のカードから B 君が 1 枚を抜き出すとき，A
君のカードの数字を X，B君のカードの数字を Y とする．
このとき，(X ,Y )の同時分布を作成し，X ,Y が独立では
ないことを示せ．また，E (XY )と E (X )E (Y )の値，およ
び V (X + Y )と V (X ) + V (Y )の値を比較せよ．
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例題 3.2.1 (4枚のカード)

[解答] x1 = y1 = −2, x2 = y2 = −1, x3 = y3 = 2かつ pi = P(X = xi ),
qj = P(Y = yj), pij = P(X = xi ,Y = yj)とおき，(X ,Y )の同時分布を
作成したのが次の表である．

X
Y

y1 = −2 y2 = −1 y3 = 2 計

x1 = −2 p11 = 0 p12 = 1/6 p13 = 1/12 p1 = 1/4
x2 = −1 p21 = 1/6 p22 = 1/6 p23 = 1/6 p2 = 1/2
x3 = 2 p31 = 1/12 p32 = 1/6 p33 = 0 p3 = 1/4
計 q1 = 1/4 q2 = 1/2 q3 = 1/4 1

まず，P(X = −2,Y = −2) = 0 と P(X = −2)P(Y = −2) = 1/16 が一

致しないため，X と Y は独立ではない．
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例題 3.2.1 (4枚のカード)

[解答 (続き)] 一方で，期待値に関しては，以下の計算結果が得られる．

E (X ) =
3∑

i=1

xipi = −1

2
, E (Y ) =

3∑
j=1

yjqj = −1

2
,

E (X 2) =
3∑

i=1

x2i pi =
5

2
, E (Y 2) =

3∑
j=1

y2
j qj =

5

2
,

E (XY ) =
3∑

i=1

3∑
j=1

xiyjpij = −1

2
,

E ((X + Y )2) =
3∑

i=1

3∑
j=1

(xi + yj)
2pij = 4.

この計算結果から，E (X )E (Y ) = 1/4 と E (XY ) = −1/2 は一致しない．
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例題 3.2.1 (4枚のカード)

[解答 (続き)] また，

V (X ) = E (X 2)− (E (X ))2 =
9

4
, V (Y ) = E (Y 2)− (E (Y ))2 =

9

4
,

V (X + Y ) = E ((X + Y )2)− (E (X ) + E (Y ))2 = 4− (−1)2 = 3

であるため，V (X + Y ) = 3 と V (X ) + V (Y ) = 9/2 は一致しない．
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例 3.2.3

標本空間 Ωは座標平面 R2 の部分集合であり，面積 (2次元)を持つとす
る．また，P は Ω上の幾何的確率とする．このとき，(Ω,P)上の確率変
数 X ,Y を

X (ω1, ω2) = ω1, Y (ω1, ω2) = ω2 (ω = (ω1, ω2) ∈ Ω)

と定めると，2変量確率変数 (X ,Y )の同時密度関数 f (x , y)は

f (x , y) =
1

|Ω|
1Ω(x , y) ((x , y) ∈ R2)

で与えられる．実際に，任意の長方形 [a1, b1]× [a2, b2]に対して

P(a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2)

= P(Ω ∩ ([a1, b1]× [a2, b2])) =
|Ω ∩ ([a1, b1]× [a2, b2])|

|Ω|

=
1

|Ω|

∫∫
[a1,b1]×[a2,b2]

1Ω(x , y)dxdy =

∫∫
[a1,b1]×[a2,b2]

f (x , y)dxdy

が成り立つため，f (x , y) は (X ,Y ) の同時密度関数である．
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例題 3.2.2

例題 3.2.2

長さが 2の線分 ABがあり，ABの中点を Cとする．AC上に無作為
に点 Pを取る．この点 Pに対して，AQの長さが APの長さの 2倍に
なるように AB上に点 Qを取る．さらに，線分 QB上に無作為に点 R
を取り，Y =「線分 QRの長さ」と定める．このとき，E (Y )の値を
求めよ．

[解答] X =「線分 APの長さ」と定め，Y =「線分 QRの長さ」と定め，
関数 f (x , y)を

f (x , y) =

{
1/(2− 2x) (0 ≤ x < 1, 0 < y ≤ 2− 2x)

0 (その他)

と定める．
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例題 3.2.2

このとき，任意の区間 I , J に対して次式が成り立つ．

P(X ∈ I ,Y ∈ J) =

∫ 1

0

1I (x)

(
1

2− 2x

∫ 2−2x

0

1J(y)dy

)
dx

=

∫∫
I×J

f (x , y)dxdy .

よって，f (x , y)は (X ,Y )の同時密度関数であり，Y の周辺密度関数は

h(y) =

∫ ∞

−∞
f (x , y)dx =

{
0 (y ≤ 0 または 2 < y)

− 1
2 log(y/2) (0 < y ≤ 2)

である．
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例題 3.2.2

ここで，ロピタルの定理より，関係式

lim
y→+0

y2 log y = lim
y→+0

log y

y−2
= lim

y→+0

y−1

(−2)y−3
= −1

2
lim

y→+0
y2 = 0

が成り立つため，この関係式と部分積分公式より，∫ 2

0

y log ydy = 2 log 2− 1

が得られる．したがって，Y の期待値は次のように計算できる．

E (Y ) =

∫ ∞

−∞
yh(y)dy = −1

2

∫ 2

0

y log
(y
2

)
dy =

1

2
.
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定義 3.2.6 (共分散)

同時分布を特徴付けるために必要な共分散を定義する．
定義 3.2.6 (共分散)

(Ω,P)上の確率変数 X , Y に対して

Cov(X ,Y ) = E ((X − E (X ))(Y − E (Y )))

を X と Y の共分散とよぶ．

Cov(X ,Y ) > 0は，「X が E (X )より大きければ，Y も E (Y )
より大きくなる傾向がある」ことを示している．
Cov(X ,Y ) < 0は，「X が E (X )より大きければ，Y は E (Y )
より小さくなる傾向がある」ことを示している．
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定理 3.2.3 (共分散の基本公式)

次の「共分散の基本公式」を証明することができる．
定理 3.2.3 (共分散の基本公式)

(Ω,P)上の確率変数 X , Y , Z に対して，次が成り立つ．

(1) Cov(X ,Y ) = Cov(Y ,X ) = E (XY )− E (X )E (Y )

(2) Cov(aX , bY ) = ab Cov(X ,Y ) (a, b ∈ R)
(3) V (X + Y ) = V (X ) + V (Y ) + 2Cov(X ,Y )

(4) Cov(X + Y ,Z ) = Cov(X ,Z ) + Cov(Y ,Z )
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定理 3.2.3 (共分散の基本公式)

[証明]
(1) E (X )と E (Y )は定数であるため，定理 3.2.1 (3.11)より，

Cov(X ,Y ) = E (XY − E (X )Y − E (Y )X + E (X )E (Y ))

= E (XY )− E (X )E (Y )− E (Y )E (X ) + E (X )E (Y )

= E (XY )− E (X )E (Y ).

(2) E (aX ) = aE (X ), E (bY ) = bE (Y ) と E (abXY ) = abE (XY )
であるため，定理 3.2.1より，

Cov(aX , bY ) = E ((aX − E (aX ))(bY − E (bY )))

= E (a(X − E (X ))b(Y − E (Y ))) = ab Cov(X ,Y ).
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定理 3.2.3 (共分散の基本公式)

[証明 (続き)]
(3) E (X + Y ) = E (X ) + E (Y )であるため，系 3.2.1より，

V (X + Y ) = E ((X − E (X ) + Y − E (Y ))2)

= E ((X − E (X ))2 + 2(X − E (X ))(Y − E (Y )) + (Y − E (Y ))2)

= V (X ) + 2Cov(X ,Y ) + V (Y ).

(4) E (X + Y ) = E (X ) + E (Y )であるため，系 3.2.1より，

Cov(X + Y ,Z ) = E ((X − E (X ) + Y − E (Y ))(Z − E (Z )))

= E ((X − E (X ))(Z − E (Z ))) + E ((Y − E (Y ))(Z − E (Z )))

= Cov(X ,Z ) + Cov(Y ,Z ).
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注意 3.2.2，系 3.2.3 (独立性と分散の加法性)

注意 3.2.2 (Ω,P)上の確率変数 X , Y が独立ならば，定理
3.2.1より，Cov(X ,Y ) = E (XY )− E (X )E (Y ) = 0である．
よって，定理 3.2.3より，V (X + Y ) = V (X ) + V (Y )が成り
立つ．このことを，次の系 3.2.3で一般化する．
系 3.2.3 (独立性と分散の加法性)

(Ω,P)上の確率変数 X1,X2, · · · ,Xn が独立であれば，次式
が成り立つ．

V (X1 + X2 + · · ·+ Xn) = V (X1) + V (X2) + · · ·+ V (Xn).
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注意 3.2.3

(Ω,P)上の確率変数 X1,X2, · · · ,Xn は独立とする．このとき，
補題 3.1.1より，n個の実数 a1, a2, · · · , an に対して
a1X1, a2X2, · · · , anXn も独立である．したがって，系 3.2.3 と
定理 2.3.3より，次式が成り立つ．

V (a1X1 + a2X2 + · · ·+ anXn)

= V (a1X1) + V (a2X2) + · · ·+ V (anXn)

= a21V (X1) + a22V (X2) + · · ·+ a2nV (Xn).
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定義 3.2.7 (相関係数)

共分散 Cov(X ,Y )は，片方の確率変数が定数倍されれば，共
分散の値も定数倍される．以下では，定数倍に関して不変な
相関係数 ρ(X ,Y )を定義する．

定義 3.2.7 (相関係数)

(Ω,P)上の確率変数 X , Y は V (X ) > 0かつ V (Y ) > 0を
みたすとする．このとき，

ρ(X ,Y ) =
Cov(X ,Y )√
V (X )V (Y )

を X と Y の相関係数とよぶ．
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例 3.2.4 (相関係数の基本性質，無相関)

(Ω,P)上の確率変数 X , Y は V (X ) > 0かつ V (Y ) > 0をみたすとする．
このとき，相関係数 ρ(X ,Y )は −1以上かつ 1以下であり，不等式

−1 ≤ ρ(X ,Y ) ≤ 1 (3.15)

が成り立つ．このことから，相関の強弱は −1以上かつ 1以下の値で測る
ことができる．ρ(X ,Y )が 1に近ければ「X と Y は正の相関が強い」，−1
に近ければ「X と Y は負の相関が強い」，0に近ければ「X と Y は相関が
弱い」と判断する．なお，ρ(X ,Y ) = 0が成り立つとき，X と Y は無相
関であるという．定数 a, b > 0に対して，次式が成り立つ．

ρ(aX , bY ) =
Cov(aX , bY )√
V (aX )V (bY )

=
abCov(X ,Y )√
a2V (X )b2V (Y )

= ρ(X ,Y ).

よって，相関係数は定数倍に関して不変である．
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例 3.2.4 (相関係数の基本性質，無相関)

次に，定数 a ̸= 0と定数 b に対して Y = aX + b という「線形の関係」
(直線的な関係)があるとき，計算結果

ρ(X ,Y ) =
Cov(X , aX + b)√
V (X ) · V (aX + b)

=
Cov(X , aX ) + Cov(X , b)√

V (X ) · a2V (X )

=
aCov(X ,X ) + 0

|a|V (X )
=

a

|a|

が得られる．したがって，この「線形の関係」(直線的な関係) があるとき，

|ρ(X ,Y )| = 1 が成り立つ．なお，このように，「X と Y の間に直線的な

関係があるほど，相関係数の絶対値が大きくなる」ことも知られている．
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例 3.2.5 (無相関と独立性)

(Ω,P)上の確率変数 X , Y は V (X ) > 0かつ V (Y ) > 0をみたすとする．
X ,Y が独立であれば，E (XY ) = E (X )E (Y )が成り立つため，X と Y は
無相関である．逆に，X と Y が無相関であっても X ,Y が独立とは限らな
いことが知られており，以下ではこのことを例を用いて説明する．
標本空間を Ω = [0, 2π]とし，Ω上の 1次元の幾何的確率を P とし，確率
空間 (Ω,P)上の確率変数 X ,Y を X (ω) = cosω, Y (ω) = sinω と定める．
このとき，計算結果

E (X ) =
1

2π

∫ 2π

0

cosω dω = 0, E (Y ) =
1

2π

∫ 2π

0

sinω dω = 0,

E (XY ) =
1

2π

∫ 2π

0

cosω sinω dω =
1

4π

∫ 2π

0

sin(2ω)dω = 0

が得られるため，X と Y は無相関である．一方で，計算結果

P(X ≥ 1/2) = P(Y ≥ 1/2) =
1

3
, P(X ≥ 1/2, Y ≥ 1/2) =

1

12
,

P(X ≥ 1/2, Y ≥ 1/2) ̸= P(X ≥ 1/2)P(Y ≥ 1/2)

も得られるため，X と Y は独立ではない． 40 / 64
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例 3.2.6

(Ω,P)上の確率変数 X1, X2, · · · , Xn が独立であり，各 Xk が
ベルヌーイ分布 Be(p)に従うとき，X = X1 + X2 + · · ·+ Xn

が二項分布 B(n, p)に従うことを系 3.1.1で証明した．

この事実を用いて，B(n, p)に従う確率変数 X の平均と分散
を再計算する．まず，E (Xk) = pと系 3.2.1より，X の平均は

E (X ) = E (X1) + E (X2) + · · ·+ E (Xn) = np.

次に，V (Xk) = p(1− p)と系 3.2.3より，X の分散は

V (X ) = V (X1) + V (X2) + · · ·+ V (Xn) = np(1− p).
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例題 3.2.4

例題 3.2.4

1 円硬貨 10 枚と 5 円硬貨 3 枚を同時に投げるとき，表
が出る 1 円硬貨の合計金額を X とし，表が出る 5 円硬
貨の合計金額を Y とすると，表が出る硬貨の合計金額は
Z = X + Y と表せる．このとき，分散 V (Z ) と期待値
E (XY 2)を求めよ．

[解答] 確率変数 X1,X2, . . . ,X10 と Y1,Y2,Y3 を

Xi =

{
1 (i 番目の 1円硬貨が表)
0 (i 番目の 1円硬貨が裏)

Yj =

{
1 (j 番目の 5円硬貨が表)
0 (j 番目の 5円硬貨が裏)

と定めると，この 13個の確率変数は独立であり，それぞれ同じベルヌー
イ分布 Be(1/2)に従う．さらに，X と Y は次のように表せる．

X = X1 + X2 + · · ·+ X10, Y = 5(Y1 + Y2 + Y3).
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例題 3.2.4

[解答 (続き)] 注意 3.2.3と V (X1) = V (Y1) = (1/2)2 より，

V (Z ) = V (X1 + X2 + · · ·+ X10 + 5(Y1 + Y2 + Y3))

= V (X1) + V (X2) + · · ·+ V (X10) + 52(V (Y1) + V (Y2) + V (Y3))

= 10× 1

4
+ 52 × 3× 1

4
=

85

4
.

が成り立つ．次に，X と Y 2 は独立であり，かつ E (X ) = 10× E (X1) = 5
であるため，E (XY 2)は

E (XY 2) = E (X )E (Y 2) = 5{V (Y ) + {E (Y )}2}
= 53{V (Y1 + Y2 + Y3) + {E (Y1 + Y2 + Y3)}2}
= 53{V (Y1) + V (Y2) + V (Y3) + {E (Y1) + E (Y2) + E (Y3)}2}

= 53

{
3× 1

4
+

(
3× 1

2

)2
}

= 375.
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定理 3.2.4 (独立確率変数の和の分布 II)

次の定理は，様々な結果を導き出す重要な役割を持つため，
結果だけでなく証明の考え方も理解することが望ましい．
定理 3.2.4 (独立確率変数の和の分布 II)

(Ω,P)上の確率変数 X と Y は独立で，X と Y の密度関
数がそれぞれ f (x), g(y) で与えられるとする．このとき，
和 Z = X + Y の密度関数は

h(z) =

∫ ∞

−∞
f (x)g(z − x)dx

である．
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定理 3.2.4 (独立確率変数の和の分布 II)

[証明] X ,Y の独立性より，(X ,Y )の同時密度関数は
f (x)g(y)である．任意の a < bに対して
D(a, b) = {(x , y) | a ≤ x + y ≤ b}とおくと，式変形

P(a ≤ Z ≤ b) = P((X ,Y ) ∈ D(a, b))

=

∫∫
D(a,b)

f (x)g(y)dxdy =

∫ ∞

−∞
f (x)

{∫ b−x

a−x

g(y)dy

}
dx

=

∫ ∞

−∞
f (x)

{∫ b

a

g(z − x)dz

}
dx (z = x + y)

=

∫ b

a

{∫ ∞

−∞
f (x)g(z − x)dx

}
dz =

∫ b

a

h(z)dz

が成り立つため，Z の密度関数は h(z)である．
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系 3.2.4 (正規分布の再生性)

次の系 3.2.4も重要な役割を持つが，証明中の計算が複雑であ
るため，初学者は主張を正しく理解できれば十分である．
系 3.2.4 (正規分布の再生性)

(Ω,P)上の確率変数 X1,X2, · · · ,Xn が独立で，各 Xi は正
規分布 N(µi , σ

2
i )に従うとする．このとき，

X1 + X2 + · · ·+ Xn

∼ N
(
µ1 + µ2 + · · ·+ µn, σ2

1 + σ2
2 + · · ·+ σ2

n

)
が成り立つ．
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系 3.2.5 (正規分布の再生性)

系 3.2.4を一般化すると，次の系 3.2.5が得られる．
系 3.2.5 (正規分布の再生性)

(Ω,P) 上の確率変数 X1,X2, · · · ,Xn が独立で，各 Xi は正規分布
N(µi , σ

2
i )に従うとする．このとき，ai ̸= 0をみたす実数 a1, a2, · · · , an

と実数 b に対して，

b + a1X1 + a2X2 + · · ·+ anXn

∼ N
(
b + a1µ1 + a2µ2 + · · ·+ anµn, a21σ

2
1 + a22σ

2
2 + · · ·+ a2nσ

2
n

)
が成り立つ．
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例 3.2.7 (標本平均の基本性質)

(Ω,P)上の確率変数 X1,X2, · · · ,Xn は独立で，各 Xk は同じ分布に従うと
する．ここで，平均を µ = E (Xk), 分散を σ2 = V (Xk)とおく．このと
き，標本平均とよばれる確率変数

X n :=
1

n

n∑
k=1

Xk =
X1 + X2 + · · ·+ Xn

n

について考察する．系 3.2.1と注意 3.2.3より，X n の平均と分散は

E (X n) =
1

n
{E (X1) + E (X2) + · · ·+ E (Xn)} = µ (3.19)

V (X n) =
1

n2
{V (X1) + V (X2) + · · ·+ V (Xn)} =

nσ2

n2
=

σ2

n
(3.20)

と計算できる．特に，各 Xk が N(µ, σ2)に従うとき，系 3.2.5より，
X n ∼ N(µ, σ2/n)が成り立つ．したがって，この場合の X n の標準化は

X n − E (X n)√
V (X n)

=
X n − µ

σ/
√
n

=

√
n(X n − µ)

σ
∼ N(0, 1). (3.21)
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例題 3.2.6

例題 3.2.6

(Ω,P)上の確率変数 X と Y が独立で，それぞれ正規分布
N(2, 32)と N(3, 42)に従うとき，P(3 ≤ X + Y ≤ 6)の値
を求めよ．

[解答] 系 3.2.4より，X + Y は正規分布 N(5, 52)に従う．し
たがって，X + Y の標準化 Z = (X + Y − 5)/5は N(0, 1)に
従う．関数 p(u) = P(0 ≤ Z ≤ u)と表 C.1を用いると，求め
る確率は次のように計算できる．

P(3 ≤ X + Y ≤ 6) = P(−0.4 ≤ Z ≤ 0.2)

= P(−0.4 ≤ Z ≤ 0) + P(0 ≤ Z ≤ 0.2)

= P(0 ≤ Z ≤ 0.4) + P(0 ≤ Z ≤ 0.2)

= p(0.4) + p(0.2) = 0.2347.
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定義 3.2.8 (χ2-分布)，例 3.2.8

統計的推定や統計的仮説検定を理解するために必要なカイ二乗分布
を定義する．

定義 3.2.8 (χ2-分布)

(Ω,P) 上の確率変数 X1,X2, · · · ,Xn が独立で，各 Xi が標準正
規分布 N(0, 1)に従うとき，χ2

n = X 2
1 + X 2

2 + · · · + X 2
n の従う

分布を自由度 n の χ2-分布 (カイ二乗分布)とよび，記号 χ2(n)
で表す．

例 3.2.8 定義 3.2.8の設定のもとで，χ2
n = X 2

1 + X 2
2 + · · ·+ X 2

n の
平均と分散は E (χ2

n) = n，V (χ2
n) = 2n と計算できる．
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系 3.2.6，注意 3.2.5

定理 3.2.4を用いると，カイ二乗分布の密度関数を求めることができる．
系 3.2.6

自由度 nの χ2-分布 χ2(n)の密度関数は次式で与えられる．

fn(x) =


1

2
n
2 Γ ( n2 )

x
n
2−1e−

x
2 (x > 0)

0 (x ≤ 0).
(3.25)

注意 3.2.5 (3.25)より，χ2(n)の密度関数 fn(x)の微分は

f ′n(x) =
1

2
n
2+1Γ ( n2 )

x
n
2−2(n − 2− x)e−

x
2 (x > 0)

と計算できる．n = 1, 2 のとき，f ′(x) < 0 (x > 0) であり，fn(x) (x > 0)

は単調に減少する．一方で，n ≥ 3 のとき，fn(x) は 0 < x < n− 2 で単調

に増加し，x > n − 2 で単調に減少し，x = n − 2 で極大値を持つ．
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図 3.1 カイ二乗分布 χ2(n)の密度関数 (n = 1, 3, 5)．
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定義 3.2.9 (t-分布)，例 3.2.9

統計的推定や統計的仮説検定を理解するために必要な t-分布を定義する．
定義 3.2.9 (t-分布)

(Ω,P)上の確率変数 X と Y は独立であり，X は N(0, 1)に従い，Y

が自由度 n の χ2-分布 χ2(n)に従うとする．このとき，T =
X√
Y /n

の従う分布を自由度 nの t-分布とよび，記号 t(n)で表す．

例 3.2.9 定義 3.2.9の設定のもとで n ≥ 2とし，T =
X√
Y /n

の平均と分

散を計算すると，T の平均は E (T ) = 0であり，T の分散は

V (T ) = ∞ (n = 2), V (T ) =
n

n − 2
(n ≥ 3).
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系 3.2.7，注意 3.2.6

系 3.2.7

自由度 nの t-分布 t(n)の密度関数は

fn(t) =
1√
nπ

·
Γ
(
n+1
2

)
Γ
(
n
2

) (
1 +

t2

n

)−(n+1)/2

(−∞ < t < ∞) (3.34)

である．また，この密度関数 fn(t)は次の漸近的な性質を持つ．

lim
n→∞

fn(t) =
1√
2π

exp

{
− t2

2

}
(−∞ < t < ∞). (3.35)

注意 3.2.6 (3.35) より，n が大きいとき，t(n) の密度関数は標準正規分

布 N(0, 1) の密度関数に近づく．
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図 3.2 t-分布 t(n) (n = 1, 3)と N(0, 1)の密度関数．
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定義 3.3.1 (多項分布)

定義 3.3.1 (多項分布)

自然数 k は k ≥ 2とし，p1, p2, · · · , pk は

pi ≥ 0 (1 ≤ i ≤ k),
k∑

i=1

pi = p1 + p2 + · · ·+ pk = 1

をみたすとする．(Ω,P)上の k 変量確率変数 (X1,X2, · · · ,Xk)が

P(X1 = x1,X2 = x2, · · · ,Xk = xk) =
n!

x1!x2! · · · xk !
px11 px22 · · · pxkk(

ただし各 xiは
k∑

i=1

xi = nをみたす 0以上の整数

)

をみたすとき，(X1,X2, · · · ,Xk)は多項分布M(n; p1, p2, · · · , pk)に従
うといい，(X1,X2, · · · ,Xk) ∼ M(n; p1, p2, · · · , pk)と表す．
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注意 3.3.1，注意 3.3.2

注意 3.3.1 (X1,X2, · · · ,Xk) ∼ M(n; p1, p2, · · · , pk) であるとき，
次式が成り立つ．

X1(ω) + X2(ω) + · · ·+ Xk(ω) = n (ω ∈ Ω). (3.37)

注意 3.3.2 1回の試行の結果が，2条件

Ai ∩ Aj = ∅ (i ̸= j), Ω =
k∪

i=1

Ai = A1 ∪ A2 ∪ · · · ∪ Ak

をみたす k 個の事象 A1,A2, · · · ,Ak に分類される試行を考える．こ
こで，各事象の発生確率は pi = P(Ai )と定める．この試行を独立
に n回繰り返したとき，事象 Ai の発生回数を Xi とすると，
(X1,X2, · · · ,Xk) ∼ M(n; p1, p2, · · · , pk) が成り立つ．なお，確率変
数 X が二項分布 B(n, p)に従うとき，2変量確率変数 (X , n−X )は

(X , n − X ) ∼ M(n; p, 1− p).
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定理 3.3.1

定理 3.3.1

(Ω,P) 上 の k 変 量 確 率 変 数 (X1,X2, · · · ,Xk) が 多 項 分 布
M(n; p1, p2, · · · , pk) に従うとする．このとき，各 Xi の周辺分布は
二項分布 B(n, pi ) である．また，1 ≤ j1 < j2 < · · · < jm ≤ k と∑m

l=1 xjl ≤ nをみたす 0以上の整数 xj1 , xj2 , · · · , xjm に対して，

P(Xj1 = xj1 , · · · ,Xjm = xjm) (3.38)

=
n!

xj1 ! · · · xjm !(n −
∑m

l=1 xjl )!
p
xj1
j1

· · · pxjmjm

(
1−

m∑
l=1

pjl

)n−
∑m

l=1 xjl

が成り立つ．また，1 ≤ i < j ≤ k に対して次も成り立つ．

Cov(Xi ,Xj) = −npipj , ρ(Xi ,Xj) =
−√

pipj√
(1− pi )(1− pj)

. (3.39)
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例題 3.3.1

例題 3.3.1

1個のさいころを 10回投げる試行を行い，Xi ,Y ,Z を

Xi = i の目が出る回数 (1 ≤ i ≤ 6),

Y = X1 + X3 + X5 = 奇数の目が出る回数,

Z = X2 + X4 + X6 = 偶数の目が出る回数

と定める．このとき，次の値を計算せよ．

E (X1 + X 2
2 ), ρ(X1,X2), ρ(X1,Y ), ρ(X2,Y ), ρ(Y ,Z ),

P(X2 = 1,Y = 3).

[解答] (X1,X2, · · · ,X6) は M(10; 1/6, 1/6, · · · , 1/6) に従い，各 Xi は

B(10, 1/6) に従い，Y ,Z は B(10, 1/2) に従う．
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例題 3.3.1

[解答 (続き)] まず，計算結果

E (Xi ) = 10 · 1
6
=

5

3
, E (X 2

i ) = V (Xi ) + (E (Xi ))
2 =

25

6

より，E (X1 + X 2
2 ) = E (X1) + E (X 2

2 ) = 35/6．次に，(3.39)より，

ρ(X1,X2) =
−
√

1
6 · 1

6√
(1− 1

6 )(1−
1
6 )

=
− 1

6
5
6

= −1

5

である．ここで，定理 3.2.3と (3.39)より，次の計算結果が得られる．

Cov(X1,Y ) = V (X1) + Cov(X1,X3) + Cov(X1,X5)

= 10 · 1
6
· 5
6
− 10 · 1

6
· 1
6
− 10 · 1

6
· 1
6
=

5

6
,

ρ(X1,Y ) =
Cov(X1,Y )√
V (X1)

√
V (Y )

=
5
6√

10 · 1
6 · 5

6

√
10 · 1

2 · 1
2

=

√
5

5
.

60 / 64



目次 確率変数の独立性 同時分布，共分散，相関係数 多項分布 多次元正規分布

例題 3.3.1

[解答 (続き)] 同様に計算すると，次の計算結果も得られる．

Cov(X2,Y ) = Cov(X2,X1) + Cov(X2,X3) + Cov(X2,X5)

= −10 · 1
6
· 1
6
− 10 · 1

6
· 1
6
− 10 · 1

6
· 1
6
= −5

6
,

ρ(X2,Y ) =
Cov(X2,Y )√
V (X2)

√
V (Y )

=
− 5

6√
10 · 1

6 · 5
6

√
10 · 1

2 · 1
2

= −
√
5

5
.

なお，Z = 10− Y と例 3.2.4より，ρ(Y ,Z ) = −1である．また，

(X2,X4,X6,Y ) ∼ M(10; 1/6, 1/6, 1/6, 1/2)

であるため，(3.38)より，次の計算結果を得る．

P(X2 = 1,Y = 3) =
10!

1!3!6!

(
1

6

)1(
1

2

)3(
1− 1

6
− 1

2

)6

=
35

1458
.
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定理 3.4.1

2変量確率変数 (X ,Y )が 2次元正規分布に従うとき，重積分の変数変換
公式を用いると，次の定理を証明できる．
定理 3.4.1

−1 < ρ < 1, µx , µy , σx > 0, σy > 0は定数とし，

f (x , y) =
1

2π
√
1− ρ2σxσy

exp

(
−1

2
D2

x,y

)
,

D2
x,y =

1

1− ρ2

{
(x − µx)

2

σ2
x

− 2ρ
(x − µx)(y − µy )

σxσy
+

(y − µy )
2

σ2
y

}
と定めると，f (x , y)は同時密度関数である．この f (x , y)から定まる
同時分布を 2次元正規分布とよび，記号 N(µx , µy ;σ

2
x , σ

2
y ; ρ) で表す．

(Ω,P) 上の 2 変量確率変数 (X ,Y ) が N(µx , µy ;σ
2
x , σ

2
y ; ρ) に従うと

き，X ,Y はそれぞれ N(µx , σ
2
x), N(µy , σ

2
y ) に従い，ρ(X ,Y ) = ρ が

成り立つ．
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系 3.4.1

例 3.2.5で解説したように，X と Y が無相関で ρ(X ,Y ) = 0であっても
X ,Y が独立とは限らない．しかし，(X ,Y )が 2次元正規分布に従うと
き，X と Y が無相関であれば X ,Y は独立である．

系 3.4.1

(Ω,P)上の 2変量確率変数 (X ,Y )が N(µx , µy ;σ
2
x , σ

2
y ; ρ)に従うとす

る．このとき，X と Y が独立であるための必要十分条件は，ρ = 0が
成り立つことである．

[証明] 定理 3.4.1 より，X ,Y はそれぞれ N(µx , σ
2
x), N(µy , σ

2
y ) に従い，

かつ ρ(X ,Y ) = ρ が成り立つ．まず，X ,Y が独立のとき，例 3.2.5 より，

ρ = ρ(X ,Y ) = 0 が成り立つ．逆に，ρ = ρ(X ,Y ) = 0 が成り立つとす

る．このとき，N(µx , µy ;σ
2
x , σ

2
y ; ρ) の同時密度関数 f (x , y) は，X の周辺

密度関数 g(x) と Y の周辺密度関数 h(y) を用いて f (x , y) = g(x)h(y) と

表せる．したがって，例 3.2.2 より，X と Y は独立である．
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例題 3.4.1

例題 3.4.1

(Ω,P) 上の 2 変量確率変数 (X ,Y ) が 2 次元正規分布
N(µx , µy ;σ

2
x , σ

2
y ; ρ) に従うとき，期待値 E (XY )を求めよ．

[解答] XY = (X − µx + µx)(Y − µy + µy )と表し，右辺を

XY = (X − µx)(Y − µy ) + µy (X − µx) + µx(Y − µy ) + µxµy

と展開する．この展開式の両辺の期待値を取ると，次式が成り立つ．

E (XY ) = E ((X − µx)(Y − µy )) + µyE (X − µx)

+ µxE (Y − µy ) + µxµy

= Cov(X ,Y ) + µxµy = ρσxσy + µxµy .
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