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本スライドの内容

このスライドは，次の書籍の第 5章「大数の法則と中心極限
定理」の内容に基づく．

『ガイダンス 確率統計：基礎から学び本質の理解へ』，
発行：サイエンス社，ISBN：978-4-7819-1526-5．

書籍に関する最新の情報は，以下の URLから入手することが
できます．

https://www.saiensu.co.jp

この URLは，サイエンス社が運営しているホームページ
です．
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概要� �
このスライドでは，確率論・統計学における基本定理である大数
の法則と中心極限定理について解説する．大数の法則とは，「同
じ分布に従う独立な n個の確率変数 X1,X2, · · · ,Xn の標本平均
X n = (X1 +X2 + · · ·+Xn)/nは，nを大きくするにつれ，真の
平均 µ = E (Xk)に収束する」と主張する法則である．なお，大
数の法則は，大数の弱法則と大数の強法則に分類される．次に，
X n がどの程度の速さで真の平均 µ に収束するかを示す定理と
して，中心極限定理がある．中心極限定理は，「

√
n(X n − µ)の

分布の形が，n を大きくするにつれ正規分布の形に近づく」と
主張する定理である．このスライドでは，(Ω,P)は確率空間を
表すものとする．また，このスライド以降では様々な近似計算
を行うが，近似計算を行うときに実数 aと b の値が十分近いこ
とを a ≈ b と表記する．� �
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例 5.1.1

1枚の硬貨を何回も続けて投げるとする．このとき，� �
表が出る割合は 1/2に近づく� �

という経験的法則が知られている．ここで，k 回目に硬貨を投げ，表が出
れば Xk = 1と定め，裏が出れば Xk = 0と定める．よって，硬貨を合計 n
回投げるときに表が出る割合は，標本平均

X n = (X1 + X2 + · · ·+ Xn)/n

で表せる．そのため，この経験的法則によると「X n は 1/2 に近づく (収

束する)」はずである．この主張を多少の誤差を許容して正当化するの

が大数の弱法則であり，誤差を許容せずに「X n は 1/2 に近づく (収束す

る)」と主張するのが大数の強法則である．大数の強法則は (証明は難しい

が) 主張を理解することは容易である．
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例 5.1.1

そのため，この硬貨投げの例を通じて大数の弱法則の主張を説明する．ま
ず，系 3.1.1より，

Sn = X1 + X2 + · · ·+ Xn ∼ B(n, 1/2).

したがって，たとえば許容する誤差が 0.1の場合において，「標本平均 X n

が 0.5を中心として誤差 0.1の範囲に収まる確率」(合計 n回のうち表が出
る割合が 0.4以上かつ 0.6以下の確率)は，次のように計算できる．

P(|X n − 0.5| ≤ 0.1) = P(0.4 ≤ X n ≤ 0.6)

= P

(
2n

5
≤ X1 + X2 + · · ·+ Xn ≤ 3n

5

)
=

∑
0≤k≤n

2n/5≤k≤3n/5

nCk

(
1

2

)n

. (5.1)
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例 5.1.1

様々な nに対し，この確率 (5.1) を計算することで，計算結果

P(|X 10 − 0.5| ≤ 0.1) ≈ 0.656, P(|X 20 − 0.5| ≤ 0.1) ≈ 0.737,

P(|X 30 − 0.5| ≤ 0.1) ≈ 0.799, P(|X 40 − 0.5| ≤ 0.1) ≈ 0.846,

P(|X 50 − 0.5| ≤ 0.1) ≈ 0.881, P(|X 100 − 0.5| ≤ 0.1) ≈ 0.965

が得られる．この計算結果から，「n を大きくすると P(|X n − 0.5| ≤ 0.1)

は 1 に近づく (収束する)」と推測できる．この推測を一般化すると大数の

弱法則が得られる．
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定理 5.1.1 (大数の弱法則)

定理 5.1.1 (大数の弱法則)� �
(Ω,P)上の確率変数の列 X1,X2, · · · ,Xk , · · · は独立で，各 Xk が同じ
分布に従い，平均 µ = E (Xk)が存在し，分散 σ2 = V (Xk)が有限と
する．このとき，任意の ε > 0に対して

lim
n→∞

P

(∣∣∣∣∣1n
n∑

k=1

Xk − µ

∣∣∣∣∣ ≤ ε

)
= 1 (5.2)

が成り立つ．� �
[証明] X n = (X1 + X2 + · · ·+ Xn)/nとおくと，例 3.2.7の (3.19)と
(3.20)より，E (X n) = µかつ V (X n) = σ2/n である．したがって，X n に
対してチェビシェフの不等式 (2.35)を適用すると，不等式

P(|X n − µ| ≤ ε) = 1− P(|X n − µ| > ε) ≥ 1− 1

ε2
V (X n) = 1− σ2

nε2

が得られる．この不等式において n → ∞ とすると，(5.2) が得られる．
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図 5.1 大数の弱法則の概念図．

各 Xk が Exp(1) に従うときの X n の密度関数 (n = 3, 10, 40, 90)．
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定理 5.1.2 (大数の強法則)

なお，大数の弱法則の結論 (5.2)を，標本点 ω を略さずに正確に書くと，

lim
n→∞

P

({
ω ∈ Ω

∣∣∣∣
∣∣∣∣∣1n

n∑
k=1

Xk(ω)− µ

∣∣∣∣∣ ≤ ε

})
= 1.

大数の弱法則は，「“X n = (X1 + X2 + · · ·+ Xn)/n が µを中心として誤差
εの範囲に収まる確率”は，nが大きくなるにつれて 1に収束する」と主
張する．この大数の弱法則の主張をふまえ，「“limn→∞ X n が最終的に µ
と一致する確率”は 1である」と主張するのが大数の強法則である．
定理 5.1.1 (大数の強法則)� �
(Ω,P)上の確率変数の列 X1,X2, · · · ,Xk , · · · が独立で，各 Xk が同じ
分布に従い，平均 µ = E (Xk) が存在するとする．このとき，次の関
係式が成り立つ．

P

(
lim

n→∞

1

n

n∑
k=1

Xk = µ

)
= 1. (5.3)

� �
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注意 5.1.1

定理 5.1.2の結論 (5.3)を，標本点 ω を略さずに正確に書くと，

P

({
ω ∈ Ω

∣∣∣∣ lim
n→∞

1

n

n∑
k=1

Xk(ω) = µ

})
= 1 (5.4)

と表せる．以下では，この結論 (5.4)を，より強い主張

lim
n→∞

1

n

n∑
k=1

Xk(ω) = µ (ω ∈ Ω) (5.5)

に変更できないことを，例 5.1.1 (硬貨を何回も投げる試行)を用いて説明
する．まず，任意の k ≥ 1に対して Xk(ω1) = 0, Xk(ω2) = 1 をみたす標
本点 ω1, ω2 ∈ Ωを取る．このとき，ω1 は「すべて裏が出る結果」を表し，
ω2 は「すべて表が出る結果」を表す．この標本点 ω1, ω2 に対して，

lim
n→∞

1

n

n∑
k=1

Xk(ω1) = 0 < µ =
1

2
< 1 = lim

n→∞

1

n

n∑
k=1

Xk(ω2)

が得られるため，(5.5) は成立しないことがわかる．
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注意 5.1.1

ω1, ω2 以外にも，各 k ≥ 1に対して関係式

X3k−2(ω3) = X3k−1(ω3) = 0, X3k(ω3) = 1,

X3k−2(ω4) = X3k−1(ω4) = 1, X3k(ω4) = 0

をみたす標本点 ω3, ω4 ∈ Ωを取れば，不等式

lim
n→∞

1

n

n∑
k=1

Xk(ω3) =
1

3
< µ =

1

2
<

2

3
= lim

n→∞

1

n

n∑
k=1

Xk(ω4)

が得られるため，この不等式からも (5.5) は成立しないことがわかる．こ

こで，標本点 ω3 は「3 の倍数のとき表が出て，それ以外は裏が出る結果」

を表し，標本点 ω4 は「3 の倍数のとき裏が出て，それ以外は表が出る結

果」を表す．なお，(5.5) が成立しない標本点は ω1, ω2, ω3, ω4 以外にも無

数に存在することが知られている．大数の強法則の結論 (5.3) は，「(5.5)

が成立しない標本点の生起確率は 0 で無視可能であり，無視できる標本点

を除けばほとんど確実に (5.5) が成立する」と主張する．
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注意 5.1.1

以下では実際に，P({ωi}) (1 ≤ i ≤ 4)の値を計算してみる．まず，任意
の自然数 nに対して次が成り立つ．

ω1 ∈ {ω ∈ Ω | X1(ω) = X2(ω) = · · · = Xn(ω) = 0},

P({ω1}) ≤ P({ω ∈ Ω | X1(ω) = X2(ω) = · · · = Xn(ω) = 0}) =
(
1

2

)n

.

よって，n → ∞ とすることで，P({ω1}) = 0 が得られる．他の ωi

(2 ≤ i ≤ 4) についても同様に議論することで，P({ωi}) = 0 が得られる．
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例題 5.1.1

例題 5.1.1� �
a > 0は定数とし，(Ω,P)上の確率変数の列 X1,X2, · · · ,Xk , · · ·
は独立で，各 Xk は一様分布 U(−a, a) に従うとする．このと
き，次をみたす実数 m1,m2,m3 を求めよ．

P

(
lim
n→∞

eX1 + eX2 + · · ·+ eXn

n
= m1

)
= 1, (5.7)

P

(
lim
n→∞

X 2
1 + X 2

2 + · · ·+ X 2
n

n
= m2

)
= 1, (5.8)

P

(
lim
n→∞

X 2
1 + X 2

2 + · · ·+ X 2
n

eX1 + eX2 + · · ·+ eXn
= m3

)
= 1. (5.9)

� �
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例題 5.1.1

[解答] 補題 3.1.1より，確率変数の列 eX1 , eX2 , · · · , eXk , · · · は独立であ
る．また，補題 A.6.1より，各 eXk は同じ分布に従う．同様に，確率変数
の列 X 2

1 ,X
2
2 , · · · ,X 2

k , · · · も独立であり，各 X 2
k は同じ分布に従う．また，

各 eXk と X 2
k の平均は次のように計算できる．

E (eXk ) =
1

2a

∫ a

−a

exdx =
ea − e−a

2a
, E (X 2

k ) =
1

2a

∫ a

−a

x2dx =
a2

3
.

したがって，大数の強法則 (定理 5.1.2)より，2つの関係式

P

(
lim

n→∞

eX1 + eX2 + · · ·+ eXn

n
=

ea − e−a

2a

)
= 1, (5.10)

P

(
lim

n→∞

X 2
1 + X 2

2 + · · ·+ X 2
n

n
=

a2

3

)
= 1 (5.11)

が得られる．よって，(5.10) より，m1 = (ea − e−a)/(2a) がわかり，

(5.11) より，m2 = a2/3 がわかる．
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例題 5.1.1

[解答 (続き)] 次に，一般に数列 {an}, {bn}が収束して， lim
n→∞

an = α,

lim
n→∞

bn = β (̸= 0)のとき lim
n→∞

an
bn

=
α

β
が成り立つため，次の「事象の包

含関係」を得る．{
lim

n→∞

eX1 + · · ·+ eXn

n
=

ea − e−a

2a

}
∩
{

lim
n→∞

X 2
1 + · · ·+ X 2

n

n
=

a2

3

}
⊂
{

lim
n→∞

X 2
1 + · · ·+ X 2

n

eX1 + · · ·+ eXn
=

2a3

3(ea − e−a)

}
. (5.12)

ここで，(5.10)，(5.11) と系 1.2.1 より，「(5.12) の左辺の積事象」の確率

は 1 である．よって，定理 1.2.1 (単調性) より，「(5.12) の右辺の事象」

の確率は 1 以上である．一方で，確率は 1 以下の値しか取り得ないため，

「(5.12) の右辺の事象」の確率は 1 である．したがって，

m3 = 2a3/(3(ea − e−a)) である．
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例題 5.1.3

例題 5.1.3� �
R を座標平面上の正方形 R = [0, 1] × [0, 1]とし，D を R
内の四分円 D = {(x , y) ∈ R | x2 + y 2 ≤ 1} とする．R 内
に無作為に取った n 個の点のうち，D に含まれる点の個
数を Nn(D) とする．このとき，次の関係式をみたす実数
µを求めよ．

P

(
lim
n→∞

Nn(D)

n
= µ

)
= 1.

� �
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例題 5.1.3

[解答] R 内に無作為に取った n個の点 P1,P2, · · · ,Pn に対して，確率変
数 X1,X2, · · · ,Xn を

Xk(ω) = 1D(Pk(ω)) =

{
1 (Pk(ω) ∈ D)
0 (Pk(ω) /∈ D)

(ω ∈ Ω)

と定める．このとき，Nn(D)(ω) = X1(ω) + X2(ω) + · · ·+ Xn(ω) (ω ∈ Ω)
と表せる．p = |D|/|R| = π/4とおくと，X1,X2, · · · ,Xn は独立で，各 Xk

は同じベルヌーイ分布 Be(p)に従う．したがって，E (Xk) = p = π/4と
大数の強法則 (定理 5.1.2)より，関係式

P

(
lim

n→∞

Nn(D)

n
=

π

4

)
= P

(
lim

n→∞

X1 + X2 + · · ·+ Xn

n
=

π

4

)
= 1

が得られる．よって，µ = π/4 である．
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はじめに (1)

(Ω,P)上の確率変数の列 X1,X2, · · · ,Xk , · · · は独立であり，各 Xk は同じ
分布に従い，平均 µ = E (Xk)が存在し，分散 σ2 = V (Xk)は有限である
とする．このとき，Sn を

Sn = X1 + X2 + · · ·+ Xn (n = 1, 2, · · · )

とおくと，系 3.2.1と系 3.2.3より，Sn の平均と分散は

E (Sn) = E (X1) + E (X2) + · · ·+ E (Xn) = nµ,

V (Sn) = V (X1) + V (X2) + · · ·+ V (Xn) = nσ2

と計算できる．よって，定義 2.3.2より，Sn の標準化 Zn は

Zn =
Sn − E (Sn)√

V (Sn)
=

Sn − nµ

σ
√
n

=

√
n

σ

(
1

n

n∑
k=1

Xk − µ

)
(5.44)

と表せる．ここで，E (Sn) = nµ は Sn の分布の “重心” を表し，

σ(Sn) = σ
√
n は Sn の分布の「“重心” を基点とした左右の散らばり度合

い」を表す．
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はじめに (2)

たとえば µ > 0 の場合を考えると，limn→∞ E (Sn) = ∞ かつ

limn→∞ σ(Sn) = ∞ であるため，n が大きくなるにつれて，Sn の分布は，

“重心”E (Sn) を右に移しながら，「“重心” を基点とした左右の散らばり度

合い」σ(Sn) を増し，Sn の確率関数や密度関数の高さを低くしていく．そ

こでまず，Sn − E (Sn) の分布を考えることで，Sn の分布の “重

心”E (Sn) = nµ を原点に移して固定する「分布の左右の平行移動操作」を

行う．その次に，Zn = (Sn − E (Sn))/σ(Sn) の分布を考えることで，

Sn − E (Sn) の分布の「左右の散らばり度合い」を 1 に整え，n を大きくし

ても確率関数や密度関数の高さが 0 につぶれないように保つ分布操作を行

う．そして，「このように Sn の分布を操作して作った Zn の分布の形が，

n が大きくなるにつれて N(0, 1) の分布の形に近づく」と主張するのが次

頁の中心極限定理である．
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定理 5.2.1 (中心極限定理)

定理 5.2.1 (中心極限定理)� �
(Ω,P)上の確率変数の列 X1,X2, · · · ,Xk , · · · は独立で，各
Xk は同じ分布に従い，平均 µ = E (Xk) が存在し，分散
σ2 = V (Xk)は有限とする．このとき，Sn を

Sn = X1 + X2 + · · ·+ Xn (n = 1, 2, · · · )

とおけば，任意の a < bに対して次式が成り立つ．

lim
n→∞

P

(
a ≤ Sn − nµ

σ
√
n

≤ b

)
=

∫ b

a

1√
2π

e−
t2

2 dt. (5.45)

� �
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図 5.2 中心極限定理の概念図

各 Xk が Exp(1)に従うときの Sn の密度関数
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図 5.2 中心極限定理の概念図

各 Xk が Exp(1)に従うときの Zn の密度関数
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例題 5.2.1 (内閣支持率)

例題 5.2.1 (内閣支持率)� �
ある国の有権者の内閣支持率が 20%であるとき，無作為
に抽出した 400人の有権者の内閣支持率を R とする．こ
のとき，R が 19.3%以上かつ 20.5%以下である確率を，中
心極限定理を用いて有効数字 4桁まで求めよ．� �
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例題 5.2.1 (内閣支持率)

[解答] p = 0.2かつ n = 400とおく．k 番目の人が内閣を支
持するときは Xk = 1と定め，支持しないときは Xk = 0と定
める．このとき，各 Xk はベルヌーイ分布 Be(p)に従う確率
変数であり，X1,X2, · · · ,Xn は独立と仮定してよい．また，
R = (X1 + X2 + · · ·+ Xn)/n = Sn/nと表せる．したがって，
中心極限定理 (定理 5.2.1)より，確率変数

Zn =
Sn − E (Sn)√

V (Sn)
=

nR − np√
np(1− p)

=

√
n(R − p)√
p(1− p)

の分布が，標準正規分布 N(0, 1)で近似できると考えること
で，(2.18)で定義した関数 p(u)と表 C.1を用いて，求める確
率は次のように近似計算できる．

P(0.193 ≤ R ≤ 0.205) = P (−0.35 ≤ Zn ≤ 0.25)

≈ p(0.35) + p(0.25) = 0.1368 + 0.0987 = 0.2355.
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