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本スライドの内容

このスライドは，次の書籍の第 6章「統計的推定」の内容に
基づく．

『ガイダンス 確率統計：基礎から学び本質の理解へ』，
発行：サイエンス社，ISBN：978-4-7819-1526-5．

書籍に関する最新の情報は，以下の URLから入手することが
できます．

https://www.saiensu.co.jp

この URLは，サイエンス社が運営しているホームページ
です．
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概要

� �
このスライドでは，統計的推定で必要となる統計量の性質を紹
介する．また，これらの統計量と，標本調査で得られた標本デー
タを利用して，未知パラメータである母数を推測する「統計的
推定の考え方」を解説する．� �
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はじめに (1)

調査の対象とする集合から得られる特性値 (数値) の集まりは母集団とよ

ばれ，その値の分布は母集団分布とよばれる．母集団の大きさ (データの

個数) が小さい場合は，母集団分布そのものや，母集団分布の代表値 (平均

や分散など) を直接調べることができ，この調査方法は全数調査とよばれ

る．全数調査では，記述統計の考え方を用いて母集団のデータの特徴を明

らかにする．これに対して，「母集団の大きさ」が大きく，母集団すべてを

調べることが困難なとき，母集団から無作為に標本を抽出し，この標本を

調べることにより元の母集団の特徴を推測する調査方法がある．この調査

方法は標本調査とよばれ，標本調査に基づいて行われる (統計的推定や統

計的仮説検定などの) 統計分析手法は推測統計とよばれる．
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はじめに (2)

n個の標本を取る操作は，確率空間 (Ω,P)上の確率変数 X1,X2, · · · ,Xn

で表すことができ，これら n個の確率変数は標本変量とよばれ，nは標本
の大きさ，または標本サイズとよばれる．なお，Xk は k 番目に標本を取
る操作を表し，Xk の実現値 (観測値)は小文字 xk で表す．この標本変量
の n個の実現値 x1, x2, · · · , xn は (大きさ nの)標本データとよばれる．

以降で紹介する推測統計では，母集団の大きさは標本の大きさ nより十分
大きく，かつ標本は無作為に抽出する (つまり，母集団の各要素を等しい
確率で抽出する)ことを想定する．そのため，以降では，標本変量
X1,X2, · · · ,Xn は独立であり (独立性)，かつ各 Xk の分布は母集団分布と
同じであると仮定する (同分布性)．

本書では，独立性と同分布性の 2 つの性質をみたす標本変量を，この母集

団からの (大きさ n の) 無作為標本とよぶ．
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はじめに (3)

母集団分布を特徴付ける定数 (またはベクトル) は母数とよばれ，一般に

は母数を θ，母集団分布を Dθ という記号で表す．以降では，多くの場合，

母集団分布には有限な平均，分散，標準偏差が存在すると仮定している．

このとき，これらの母数をそれぞれ母平均，母分散，母標準偏差とよび，

それぞれ記号 µ, σ2, σ で表す．一般に，母集団分布が Dθ のとき，その母

集団を Dθ 母集団とよぶ．なお，母集団分布が正規分布 N(µ, σ2) のとき，

その母集団を正規母集団 N(µ, σ2) ともよぶ．同様に，母集団分布が指数

分布 Exp(λ) のとき，その母集団を指数母集団 Exp(λ) ともよぶ．他にも，

母集団分布がベルヌーイ分布 Be(p) のとき，母数 p を母比率とよび，そ

の母集団を二項母集団 Be(p) ともよぶ．

7 / 44



目次 標本分布 点推定 区間推定

定義 6.1.1 (統計量と標本分布)，注意 6.1.1

定義 6.1.1 (統計量と標本分布)� �
標本変量 X1,X2, · · · ,Xn の関数 Tn = T (X1,X2, · · · ,Xn)
を統計量といい，統計量 Tnが従う分布を標本分布とよぶ．
X1,X2, · · · ,Xnにそれぞれの実現値 x1, x2, · · · , xnを代入し
た統計量の実現値は，小文字で tn = T (x1, x2, · · · , xn) と
表す．特に，母数 θ を推定する目的で使われる統計量 Tn

を θの推定量とよび，その実現値 tn を θの推定値とよぶ．� �
注意 6.1.1 定義 6.1.1において，各 Xk は (Ω,P)上の確率変
数であるため，統計量 Tn も (Ω,P)上の確率変数であり，

Tn(ω) = T (X1(ω),X2(ω), · · · ,Xn(ω)) (ω ∈ Ω)

と定義される．
8 / 44



目次 標本分布 点推定 区間推定

基本的な統計量とその平均 (分散) (1)

ある母集団からの大きさ nの無作為標本 X1,X2, · · · ,Xn を考え，母平均
µ = E (Xk)が存在し，母分散 σ2 = V (Xk)が有限とする．次の 3つの基本
的な統計量の標本分布に関する結果を紹介する．

標本平均：X n =
1

n

n∑
k=1

Xk (6.1)

ŝ2n =
1

n

n∑
k=1

(Xk − µ)2 (6.2)

不偏標本分散：U2
n =

1

n − 1

n∑
k=1

(Xk − X n)
2 (n ≥ 2) (6.3)

まず，例 3.2.7 より，E (X n) = µ かつ V (X n) = σ2/n である．
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基本的な統計量とその平均 (分散) (2)

次に，系 3.2.1より，次式が成り立つ．

E (ŝ2n) =
1

n

n∑
k=1

E ((Xk − µ)2) =
1

n

n∑
k=1

σ2 = σ2. (6.4)

次に，E (U2
n )を計算する．まず，系 3.2.1より，式変形

E

(
n∑

k=1

(Xk − X n)
2

)
=

n∑
k=1

E ((Xk − µ+ µ− X n)
2)

=
n∑

k=1

E ((Xk − µ)2) +
n∑

k=1

E ((X n − µ)2)− 2
n∑

k=1

E ((Xk − µ)(X n − µ))

= nσ2 + nV (X n)− 2
n∑

k=1

E ((Xk − µ)(X n − µ)) (6.5)

が成り立つ．
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基本的な統計量とその平均 (分散) (3)

ここで，X1,X2, · · · ,Xn は独立であるため，Cov(Xk ,Xj) = 0 (k ̸= j)であ
る．したがって，次の計算結果が得られる．

E ((Xk − µ)(X n − µ)) =
1

n

n∑
j=1

E ((Xk − µ)(Xj − µ))

=
1

n
V (Xk) +

1

n

∑
1≤j≤n
j ̸=k

Cov(Xk ,Xj) =
σ2

n
. (6.6)

(6.5), (6.6) および V (X n) = σ2/nより，次が成り立つ．

E

(
n∑

k=1

(Xk − X n)
2

)
= nσ2 + nV (X n)− 2n

σ2

n
= (n − 1)σ2,

E (U2
n ) =

1

n − 1
E

(
n∑

k=1

(Xk − X n)
2

)
= σ2. (6.7)
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基本的な統計量とその平均 (分散) (4)

定義 平均 (分散) 名称

X n = 1
n

∑n
k=1 Xk E(X n) = µ (V (X n) = σ2/n) 標本平均

ŝ2n = 1
n

∑n
k=1(Xk − µ)2 E(ŝ2n ) = σ2

U2
n = 1

n−1

∑n
k=1(Xk − X n)2 E(U2

n ) = σ2 不偏標本分散

12 / 44



目次 標本分布 点推定 区間推定

注意 6.1.2

(6.3)の U2
n の分布の理論的性質 (定理 6.1.2)を理解するため

には，(6.2)の ŝ2n の分布の理論的性質 (定理 6.1.1) を先に理解
しておくことが望ましい．そのため，ŝ2n を基本的な統計量の
1つとして取り上げて解説する．しかし，µの値が未知の場合
は，X1,X2, · · · ,Xn の値が定まっても ŝ2n の数値を具体的に計
算できない．そのため，U2

n と比較すると，ŝ2n は区間推定や統
計的仮説検定での応用の機会が限られる．
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定理 6.1.1

次に紹介する定理 6.1.1と定理 6.1.2は，区間推定や統計的仮
説検定で必要となる重要な定理である．定理 6.1.2は結果を理
解できれば十分である．
定理 6.1.1� �
N(µ, σ2) 母集団からの大きさ n の無作為標本を
X1,X2, · · · ,Xn とする．このとき，(6.1), (6.2) で定めた
X n と ŝ2n に対して次が成り立つ．

(1)
nŝ2n
σ2

=
n∑

k=1

(
Xk − µ

σ

)2

∼ χ2(n) (6.8)

(2)

√
n(X n − µ)

σ
∼ N(0, 1) (6.9)� �
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定理 6.1.1

[証明] まず，例 3.2.7の (3.21)より，(6.9)が成り立つ．次
に，各 k に対して Zk = (Xk − µ)/σ とおく．注意 2.1.6より，
各 Zk は N(0, 1)に従い，補題 3.1.1より，Z1,Z2, · · · ,Zn は独
立である．したがって，定義 3.2.8より，(6.8)が成り立つ．
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定理 6.1.2

定理 6.1.1の (6.9)の分母の σ を
√

U2
n に置き換えると，次の

定理 6.1.2の (6.11)となる．定理 6.1.2は結果を理解できれば
十分である．
定理 6.1.2� �
N(µ, σ2) 母集団からの大きさ n の無作為標本を
X1,X2, · · · ,Xn とする (n ≥ 2)．このとき，(6.1), (6.3)
で定めた X n と U2

n は独立であり，次が成り立つ．

(1)
(n − 1)U2

n

σ2
=

1

σ2

n∑
k=1

(Xk − X n)
2 ∼ χ2(n − 1) (6.10)

(2)

√
n(X n − µ)√

U2
n

∼ t(n − 1) (6.11)

� �
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点推定：はじめに (1)

母数 θ の推定量 Tn = T (X1,X2, · · · ,Xn)を決めて，「標本変量
X1,X2, · · · ,Xn の実現値 x1, x2, · · · , xn から求められる 1つの推定値
tn = T (x1, x2, · · · , xn)が θ である」と推測するのが点推定の考え方．

推定量のばらつきの大きさを測定するための指標 (ものさし)として，分散
V (Tn)や標準偏差

se(Tn) :=
√
V (Tn) =

√
E ((Tn − E (Tn))2)

などが用いられ，se(Tn)は推定量 Tn の標準誤差ともよばれる．母数 θ が
実数値のとき，θ と推定量 Tn との「近さ」を測るために

MSE(Tn, θ) = E ((Tn − θ)2)

を用いることにし，この MSE(Tn, θ) を「θ の推定量 Tn に対する平均二

乗誤差」とよぶ．MSE(Tn, θ) が小さいほど「Tn は θ の良い推定量であ

る」と考えられる．
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点推定：はじめに (2)

母数 θ の真の値が未知のとき，一般にはMSE(Tn, θ)の値を計算できな
い．MSE(Tn, θ)と分散 V (Tn)の間には，大小関係

MSE(Tn, θ) = E ((Tn − E (Tn) + E (Tn)− θ)2)

= E ((Tn − E (Tn))
2) + 2(E (Tn)− θ)E (Tn − E (Tn)) + (E (Tn)− θ)2

= V (Tn) + (E (Tn)− θ)2 ≥ V (Tn) (6.26)

が成り立つ．なお，Tn が E (Tn) = θ をみたす場合は
MSE(Tn, θ) = V (Tn)が成り立つため，この場合は V (Tn)の計算を通じ
てMSE(Tn, θ) の値を計算できる．このように E (Tn) = θ をみたす Tn は
「θ の不偏推定量」とよばれる (定義 6.2.1)．

点推定では，良い性質を持った推定量を採用することが重要である．推定

量の望ましい性質として不偏性，一致性，最尤性などがあり，以下ではこ

れらの性質を順に紹介する．
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定義 6.2.1 (不偏性)

定義 6.2.1 (不偏性)� �
母数 θ は実数値とする．標本変量 X1,X2, · · · ,Xn に対し，
統計量 Tn = T (X1,X2, · · · ,Xn) が θ の不偏推定量である
とは，E (Tn) = θ が成立することである．また，Tn =
T (X1,X2, · · · ,Xn) と Sn = S(X1,X2, · · · ,Xn) がともに θ の
不偏推定量で，標準誤差の大小関係 se(Sn) ≤ se(Tn)，つまり√

E ((Sn − θ)2) ≤
√

E ((Tn − θ)2)

をみたすとき，Sn は Tn よりも有効であるという．� �
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例 6.2.1

X1,X2, · · · ,Xn は，ある母集団からの大きさ nの無作為標本とし，
母平均 µ = E (Xk)が存在し，母分散 σ2 = V (Xk)は有限とする．
このとき，標本平均 X n は E (X n) = µ をみたすため，µの不偏推定
量である．さらに，次も成り立つ．

E (X k) = µ, V (X k) =
σ2

k
(1 ≤ k ≤ n).

したがって，1 ≤ j < k ≤ n に対し，X j と X k はともに µの不偏推
定量であり，X k は X j より有効である．

20 / 44



目次 標本分布 点推定 区間推定

例 6.2.1

次に，定数 αk (1 ≤ k ≤ n)が
∑n

k=1 αk = 1をみたすとき，統計量

Tn =
n∑

k=1

αkXk

は線形推定量とよばれる．このとき，系 3.2.1より，

E (Tn) =
n∑

k=1

αkE (Xk) =
n∑

k=1

αkµ = µ

であるため，Tn は µの不偏推定量である．一方で，X1,X2, · · · ,Xn

の独立性と注意 3.2.3より，次式が成り立つ．

V (Tn) =
n∑

k=1

α2
kV (Xk) = σ2

n∑
k=1

α2
k . (6.27)
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例 6.2.1

(6.27)と
∑n

k=1 αk = 1より，次の不等式が成り立つ．

0 ≤ σ2
n∑

k=1

(
αk −

1

n

)2

= σ2

(
n∑

k=1

α2
k −

2

n

n∑
k=1

αk +
n∑

k=1

1

n2

)

= σ2
n∑

k=1

α2
k −

σ2

n
= V (Tn)− V (X n). (6.28)

不等式 (6.28)より，線形推定量の中で分散が最小となるのは標本平
均 X n である．このことが，母平均 µの推定量として標本平均 X n

が広く用いられる根拠となる．
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例題 6.2.1

例題 6.2.1� �
X1,X2 を N(µ, σ2)母集団からの大きさ 2の無作為標本と
する．このとき，次の統計量が σ2 の不偏推定量となるよ
うに定数 c1, c2 を求めよ．

(1) c1(X1 + X2 − 2µ)2 (2) c2(X1 − X2)
2� �

[解答] まず，系 3.2.4より，X1 + X2 ∼ N(2µ, 2σ2)がわか
る．よって，E ((X1 + X2 − 2µ)2) = 2σ2 がわかり，c1 = 1/2
である．次に，系 3.2.5より，X1 − X2 ∼ N(0, 2σ2)がわかる．
よって，E ((X1 − X2)

2) = 2σ2 がわかり，c2 = 1/2である．
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定義 6.2.2 (一致性)

標本の大きさ nごとに，母数 θ の推定量 Tn = T (X1,X2, · · · ,Xn)
が与えられることが多く，このとき，T1,T2, · · · ,Tk , · · · は推定量
の (無限)系列である．次に紹介する一致性は，「標本サイズ nごと
に与えられた推定量の (無限)系列に対する性質」であり，標本サイ
ズ nを大きく取れば，「推定量 Tn が母数 θに近い値を取る確率」が
1に近づくことを意味する．
定義 6.2.2 (一致性)� �
母数 θは実数値とする．大きさ nの標本変量 X1,X2, · · · ,Xn に
対し定義される統計量 Tn = T (X1,X2, · · · ,Xn) が θ の一致推
定量であるとは，任意の ε > 0に対して

lim
n→∞

P(|Tn − θ| ≤ ε) = 1

が成り立つことをいう．� �
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例 6.2.2

X1,X2, · · · ,Xn は，ある母集団からの大きさ nの無作為標本とし，母平均
µ = E (Xk)が存在し，母分散 σ2 = V (Xk)は有限とする．
定数 αk (1 ≤ k ≤ n) は

∑n
k=1 αk = 1をみたすとし，線形推定量

Tn =
∑n

k=1 αkXk について考察する．例 6.2.1より，

E (Tn) = µ, V (Tn) = σ2
n∑

k=1

α2
k .

よって，チェビシェフの不等式より，任意の ε > 0に対して，不等式

P(|Tn − µ| > ε) ≤ 1

ε2
V (Tn) =

σ2

ε2

n∑
k=1

α2
k

が成り立つ．たとえば，αk = 1/n (1 ≤ k ≤ n)の場合は
n∑

k=1

α2
k = n

(
1

n

)2

=
1

n
→ 0 (n → ∞)

であるため，limn→∞ P(|X n − µ| > ε) = 0 がわかる．したがって，X n は

µ の一致推定量である． 25 / 44
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「最尤法」導入の背景

ここまでは，「良い推定量」がみたすべき性質として，不偏性や一致
性について解説した．推定量の一致性とは，標本サイズを大きくす
るにつれ (期待値ではなく)推定量自身が母数に近づくという性質を
いう．そのため，一致性は「良い推定量」が当然みたすべき性質と
言える．一方で，ある不偏推定量に「期待値 0の任意の確率変数」
を加えた新たな推定量は無限に存在するが，これらはすべて不偏推
定量である．そのため，すべての不偏推定量が「良い推定量」とは
限らない．また，後程説明する「最も良い推定量の 1つと考えられ
ている最尤推定量」は，一般に不偏性をみたすとは限らない．この
ように，不偏性は「良い推定量」がみたすべき性質ではあるものの，
必須の要件ではない．さらに，不偏推定量が存在しない場合や，存
在してもその中で最も有効な不偏推定量を求めることが困難な場合
もある．そこで以下では，別の推定法として，最も良い統計的推定
法の 1つと考えられている最尤推定法について説明する．
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定義 6.2.3 (最尤法)

X1,X2, · · · ,Xn は θ を母数とする母集団分布 Dθ からの大きさ nの
無作為標本とし，X1,X2, · · · ,Xn の実現値 x1, x2, · · · , xn が与えら
れているとする．このとき，尤度関数とよばれる母数 θ の関数 L(θ)
を以下で定義する．まず，母集団分布 Dθ が密度関数 fθ(x) から定
まる分布の場合は，L(θ)を次式で定義する．

L(θ) =
n∏

k=1

fθ(xk). (6.29)

次に，母集団分布 Dθ が離散分布の場合は，L(θ)を次式で定義する．

L(θ) =
n∏

k=1

P(Xk = xk). (6.30)
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定義 6.2.3 (最尤法)

このとき，関係式

L(θ̂n) = max
θ

L(θ) (6.31)

をみたし，尤度関数を最大にする θ̂n を θ の推定値とする方法を最
尤法とよび，この θ̂n を θ の最尤推定値とよぶ．

θ̂n は実現値 x1, x2, · · · , xn の関数であるから，n変数関数
θ̂(x1, x2, · · · , xn)を用いて

θ̂n = θ̂(x1, x2, · · · , xn)

と表せる．この最尤推定値 θ̂(x1, x2, · · · , xn) の実現値 x1, x2, · · · , xn
を確率変数 X1,X2, · · · ,Xn に置き換えた確率変数

θn = θ̂(X1,X2, · · · ,Xn)

を θ の最尤推定量とよぶ．
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注意 6.2.2

最尤法の考え方と「最尤推定量が良い推定量である」ことを
説明する．定義 6.2.3において，標本変量 X1,X2, · · · ,Xn の独
立性より，(6.29)は n変量確率変数 (X1,X2, · · · ,Xn)の
(x1, x2, · · · , xn)における同時密度関数の値であり，(6.30)は
確率 P(X1 = x1, · · · ,Xn = xn)の値である．そのため最尤法と
は，標本データ x1, x2, · · · , xn が得られたときに，「この標本
データにおける同時密度関数の値 (6.29)」，または「この標本
データが得られる確率 (6.30)」を最大にするように母数 θを
推定する方法である．確率的には起こりにくい標本データが
得られることもあるため，この方針で得られた最尤推定量が
上手く機能するかは自明ではない．しかし，最尤推定量は漸
近正規性とよばれる性質を持ち，この漸近正規性が「最尤推
定量が良い推定量である」ことを保証する．
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注意 6.2.3

定義 6.2.3において，(6.31)の最大値を求めることは，対数尤
度関数 l(θ) = log L(θ) の最大値を求めることと同値である．
最尤推定値を計算するときは L(θ)と l(θ) のどちらを用いても
よいが，対数尤度関数 l(θ)を用いた方が，最尤推定値を求め
るための計算が簡単であることが多い．
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例 6.2.3

X1,X2, · · · ,Xn を二項母集団 Be(p)からの大きさ nの無作為標本と
し，母比率 p の最尤推定量を計算する．まず，x1, x2, · · · , xn を
X1,X2, · · · ,Xn の実現値とすると，これらの値は 0または 1であ
る．以下では，x =

∑n
k=1 xk とおく．このとき，尤度関数 L(p)と

対数尤度関数 l(p) = log L(p)は

L(p) =
n∏

k=1

P(Xk = xk) =
n∏

k=1

pxk (1− p)1−xk = px(1− p)n−x ,

l(p) = log L(p) = x log p + (n − x) log(1− p)

と計算できる．さらに，対数尤度関数の微分は

d

dp
l(p) =

x

p
− n − x

1− p
=

x − np

p(1− p)
(0 < p < 1)

と計算できる．
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例 6.2.3

したがって，L(p)の最大値は p̂n = x/nで達成され，

p̂n =
1

n
(x1 + x2 + · · ·+ xn), pn =

1

n
(X1 + X2 + · · ·+ Xn) = X n

である．よって，母比率 p の最尤推定量は標本平均 X n である．

したがって，たとえば表が出る確率が p である硬貨を 100回投げて
70回表が出たとすると，p̂100 = 70/100 = 0.7が最尤推定値である．

もちろん p = 0.1の場合でも 70回表が出る可能性はあるが，その
確率は L(0.1) = (0.1)70(0.9)30 であり，この確率は p = 0.7の場合
に 70回表が出る確率 L(0.7) = (0.7)70(0.3)30 よりはるかに小さい．

そのため，母比率 p を p̂100 = 0.1と推測するより p̂100 = 0.7と推
測するほうが尤もらしい，と考えるのが最尤法の考え方である．
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例題 6.2.3

例題 6.2.3� �
X1,X2, · · · ,Xn を N(µ, σ2) 母集団からの大きさ n の無作為標本とす
るとき，母数 θ = (µ, σ2)の最尤推定量を求めよ．� �

[解答] x1, x2, · · · , xn を X1,X2, · · · ,Xn の実現値とすると，これらの値は
実数であり，尤度関数 L(µ, σ2)と対数尤度関数 l(µ, σ2) = log L(µ, σ2)は

L(µ, σ2) =
n∏

k=1

1√
2πσ2

exp

{
− (xk − µ)2

2σ2

}
,

l(µ, σ2) = −n

2
log(2πσ2)− 1

2σ2

n∑
k=1

(xk − µ)2

と計算できる．
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例題 6.2.3

[解答 (続き)] l(µ, σ2)を µと σ2 の 2変数関数と考えて偏微分すると，

∂

∂µ
l(µ, σ2) =

1

σ2

n∑
k=1

(xk − µ),

∂

∂σ2
l(µ, σ2) = − n

2σ2
+

1

2(σ2)2

n∑
k=1

(xk − µ)2

が成り立つ．条件 ∂
∂µ l(µ, σ

2) = ∂
∂σ2 l(µ, σ

2) = 0 をみたす µと σ2 の値の

とき，l(µ, σ2)は最大となる．したがって，母数 θ = (µ, σ2)の最尤推定値

θ̂n = (µ̂n, (̂σ2)n)は

µ̂n =
1

n

n∑
k=1

xk(= xn), (̂σ2)n =
1

n

n∑
k=1

(xk − xn)
2

である．よって，θ = (µ, σ2)の最尤推定量 θn = (µn, (σ
2)n)は

µn =
1

n

n∑
k=1

Xk = X n, (σ2)n =
1

n

n∑
k=1

(Xk − X n)
2.
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「区間推定」導入の背景

母数 θは実数値とする．大きさ nの標本調査で得られた標本
データ x1, x2, · · · , xn に対し，「この標本データを用いた推定
値 θ̂n = θ̂(x1, x2, · · · , xn) が母数 θである」と的確に推測する
のが点推定の考え方であった．しかし，θ̂n は統計的に θに近
い値を取ると考えられるものの，θ̂n と θが一致することはほ
とんど起こり得ない．そこで，「(確率的に評価した)一定の幅
を持つ区間を作り，母数 θはその区間の中にある」と幅を持
たせて推測するのが区間推定の考え方である．
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信頼度，信頼区間

Dθ 母集団からの大きさ nの標本変量を X1,X2, · · · ,Xn と表す．ま
た，定数 αは 0 < α < 1をみたすとし，この αは小さい値である
ことを想定する．ここで，2つの統計量

Sn = S(X1,X2, · · · ,Xn), Tn = T (X1,X2, · · · ,Xn)

が大小関係 Sn ≤ Tn と，関係式

P(S(X1,X2, · · · ,Xn) ≤ θ ≤ T (X1,X2, · · · ,Xn)) = 1− α (6.32)

をみたすとき，Sn,Tn を両端とする (無作為な)区間

[S(X1,X2, · · · ,Xn),T (X1,X2, · · · ,Xn)] (6.33)

を信頼度 1− αの θ の信頼区間，または θ の 100(1− α)%信頼区
間とよぶ．
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信頼度，信頼区間

このとき，X1,X2, · · · ,Xn の実現値 x1, x2, · · · , xn が得られるごと
に，2つの統計量の実現値 S(x1, x2, · · · , xn),T (x1, x2, · · · , xn)と，
(6.33)に対応した 1つの信頼区間

[S(x1, x2, · · · , xn),T (x1, x2, · · · , xn)] (6.34)

が確定する．たとえば，大きさ nの観測を 1000回実施した場合，
信頼度 95% (α = 0.05)の信頼区間 (6.34)は，1000回のうち 950
回程度は母数 θ を含むことが期待される．

区間推定では，信頼係数 1− αの値を大きくする (αの値を小さく
する)と，「信頼区間の幅

T (X1,X2, · · · ,Xn)− S(X1,X2, · · · ,Xn)

が広くなり鋭い推定ができなくなる」という相反の関係がある．
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分位点

区間推定の考え方に基づき，いくつかの具体的な母集団分布の場合に，母
数の信頼区間の構成方法を紹介する．そのための準備として，分布の分位
点の記号を定義する．定数 αは 0 < α < 1をみたし，X は連続型確率変
数とする．このとき，関係式

P(X ≥ u) = α

をみたす実数 u の値を，この確率変数 X が従う分布の「上側 α分位点」
とよぶ．また，上側 1− α分位点を「下側 α分位点」とよぶ．これらの分
位点は，X の分布ごとに次表の記号で表す．

分布 確率変数 X 上側 α分位点 下側 α分位点
標準正規分布 X ∼ N(0, 1) zα z1−α = −zα

t-分布 X ∼ t(n) t
(n)
α t

(n)
1−α = −t

(n)
α

カイ二乗分布 X ∼ χ2(n) c
(n)
α c

(n)
1−α
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図 6.1 標準正規分布や t-分布の密度関数の概形．

標準正規分布や t-分布の密度関数は，原点に関して左右対称である．その
ため，0 < α < 1/2をみたす αに対して，分位点に関して次が成立．

z1−α = −zα, t
(n)
1−α = −t(n)α . (6.35)

-3 -2 -1 1 2 3

x

0.1

0.2

0.3

0.4

f

確率

下側     分位点 上側　  分位点

1− α

α/2 α/2
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図 6.2 カイ二乗分布の密度関数の概形．

カイ二乗分布の密度関数は，原点に関して左右対称ではないため，分位点

c
(n)
α については (6.35) に対応する関係式は成立しない．

2 4 6 8 10 12 14
x

0.05

0.10

0.15

f
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系 6.3.1

正規母集団 N(µ, σ2)における母平均 µや母分散 σ2 の区間推定を行う場合に，次の系 6.3.1
が有用である．

系 6.3.1� �
X1,X2, · · · ,Xn を N(µ, σ2)母集団からの大きさ n の無作為標本とする．このとき，3
つの統計量 X n, ŝ2n , U

2
n と，0 < α < 1に対して次が成り立つ．

1− α = P

(
X n − zα/2

σ
√
n

≤ µ ≤ X n + zα/2
σ
√
n

)
, (6.36)

1− α = P

(
X n − t

(n−1)
α/2

√
U2
n√
n

≤ µ ≤ X n + t
(n−1)
α/2

√
U2
n√
n

)
, (6.37)

1− α = P

 nŝ2n

c
(n)
α/2

≤ σ2 ≤
nŝ2n

c
(n)
1−α/2

 , (6.38)

1− α = P

 (n − 1)U2
n

c
(n−1)
α/2

≤ σ2 ≤
(n − 1)U2

n

c
(n−1)
1−α/2

 . (6.39)

� �
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系 6.3.1

[証明] 定理 6.1.1より，統計量の分布に関して次が成り立つ．

√
n(X n − µ)

σ
∼ N(0, 1),

nŝ2n
σ2

∼ χ2(n).

これらの標本分布の上側と下側の α/2分位点を用いた 2つの確率

P

(
−zα/2 ≤

√
n(X n − µ)

σ
≤ zα/2

)
, P

(
c
(n)
1−α/2

≤
nŝ2n
σ2

≤ c
(n)
α/2

)

の値はいずれも 1− αである．一方で，事象の同値な表現として{
−zα

2
≤

√
n(X n − µ)

σ
≤ zα

2

}
=

{
X n − zα

2

σ
√
n

≤ µ ≤ X n + zα
2

σ
√
n

}
,

{
c
(n)
1−α/2

≤
nŝ2n
σ2

≤ c
(n)
α/2

}
=

 nŝ2n

c
(n)
α/2

≤ σ2 ≤
nŝ2n

c
(n)
1−α/2


が成り立つため，(6.36) と (6.38) が得られる．同様にして，(6.37) と (6.39) も得られる．
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例 6.3.1

N(µ, σ2)母集団からの大きさ 20の無作為標本を X1,X2, · · · ,X20 とする．

標本平均 X 20 の実現値が 100で σ2 = 102 のとき，(6.36)と
z0.05 = 1.645より，母平均 µの 90%信頼区間は[

100− 10√
20

z0.05, 100 +
10√
20

z0.05

]
= [96.32, 103.68].

標本平均 X 20 の実現値が 100で U2
10 = 102 のとき，(6.37)と

t
(19)
0.05 = 1.729より，母平均 µの 90%信頼区間は[

100− 10√
20

t
(19)
0.05 , 100 +

10√
20

t
(19)
0.05

]
= [96.13, 103.87].
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例 6.3.1

N(µ, σ2)母集団からの大きさ 20の無作為標本を X1,X2, · · · ,X20 とする．

ŝ220 =
1
20

∑20
k=1(Xk − µ)2 の実現値が 100のとき，(6.38)と

c
(20)
0.95 = 10.85と c

(20)
0.05 = 31.41より，母分散 σ2 の 90%信頼区間は[

20× 100

c
(20)
0.05

,
20× 100

c
(20)
0.95

]
= [63.67, 184.33].

不偏標本分散 U2
20 の実現値が 100のとき，(6.39)と c

(19)
0.95 = 10.12と

c
(19)
0.05 = 30.14より，σ2 の 90%信頼区間は[

19× 100

c
(19)
0.05

,
19× 100

c
(19)
0.95

]
= [63.04, 187.75].
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