機械工学系のための数学

初版１刷の正誤訂正
2020年2月12日

(1) p.9 行目 変数：（誤）x = f(x) → （正）x = f(y)

(2) p.9 例題1.4 解答 (1): y の微分 → x の微分

（誤） \(\frac{d}{dy}\sinh^{-1}x = \frac{1}{\sqrt{x^2+1}} \) → （正） \(\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{x^2+1}} \)

(3) p.27 1.6 慣性モーメント : サブタイトル

□ 慣性モーメント空間 → □ 慣性モーメント（「空間」を削除）

(4) p.96 BOX 4.4 2行目：Sx → S（添え字xを削除）

(5) p.97 例題 4-7 (2):

(2) ベクトル場 \(\mathbf{U} = (x(z^2 - y), y(x^2 - z), z(y^2 - x)) \) の発散は，
8 個の点において0になることを示せ。

\[\nabla \mathbf{U} = \frac{\partial x}{\partial x}(z^2 - y) + \frac{\partial y}{\partial y}(x^2 - z) + \frac{\partial z}{\partial z}(y^2 - x) = (z^2 - y)
\]
\[+ (x^2 - z) + (y^2 - x) = x(x - 1) + y(y - 1) + z(z - 1) = 0. \]

この2次曲面は，単位立方体の8個の頂点 (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),
(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1) を含むことに注意する。（下線部変更）
(6) p.105 例3 4行目の式: \[E = zQ \frac{r}{r^3} \rightarrow E = Q \frac{r}{r^3} \quad (z \text{を削除}) \]

(7) p.114 (5): 第2, 3行目 → 第2, 3, 4行目

(8) p.129, 式(5.56)

\[
f(x)u(x)e^{-ax} \int_{0}^{\infty} \]

フーリエ変換とラプラス変換の関係

\[
F(\omega) = \int_{0}^{\infty} f(x)e^{-(\alpha+\omega)x} \, dx
\]

ラプラス変換

\[
L(s) = \int_{0}^{\infty} f(x)e^{-\epsilon} \, dx
\]

\[(s = \alpha + i\omega) \]

(9) p.163 式(6.76):

\[
x_0(t) = c_1 e^{-\left\{c-\sqrt{(c^2-4km)/2m}\right\}t} + c_2 e^{-\left\{c+\sqrt{(c^2-4km)/2m}\right\}t}
\]

(誤)

\[
downarrow
\]

(正)

\[
x_0(t) = c_1 e^{-\left(\frac{c-\sqrt{(c^2-4km)/2m}}{2m}\right)t} + c_2 e^{-\left(\frac{c+\sqrt{(c^2-4km)/2m}}{2m}\right)t}
\]

(6.76)

(10) p.196, 式(7.58)の上の行:

\[
\cdots - \frac{\partial}{\partial v}(w(x)y(x)) = 0 \rightarrow \cdots - \frac{\partial}{\partial v}(w(x)v(x)) = 0
\]
(11) p.199, 式(7.75)の下の行：$c_1, c_2 \rightarrow c_3, c_4$

(12) p.201, 解析の結果（図7.9）の(3)：

\[
\begin{align*}
(\text{誤}) \\
\quad x = \frac{1}{\sqrt{3}} \approx 5.77 \ell & \rightarrow \\
(\text{正}) \\
\quad x = \frac{1}{\sqrt{3}} \ell \approx 0.577 \ell
\end{align*}
\]

以上