■ 第2章 C発展問題の<mark>解答例</mark>

60 解. 2 つの解を α . 3 α とすると、解と係数の関係より、

$$\begin{cases} \alpha + 3\alpha = 4\alpha = 4(m-1) \\ 3\alpha \cdot \alpha = 6m+3 \end{cases} \Leftrightarrow \begin{cases} \alpha = m-1 & \cdots \text{ } \\ \alpha^2 = 2m+1 & \cdots \text{ } \end{cases}$$

- ①を②に代入すると $(m-1)^2 = 2m+1 \Leftrightarrow m(m-4) = 0$: m=0, 4
- (i) m=0 のとき ①より $\alpha=-1$
- (ii) m=4 のとき ①より $\alpha=3$

以上より
$$\begin{cases} m = 0 \text{ obs } x = -1, -3 \\ m = 4 \text{ obs } x = 3, 9 \end{cases}$$
 (答)

51 解. $\begin{cases} x+y=p & \cdots \\ x^2+y^2=4 & \cdots \end{aligned}$ ①より y=p-x だから、②に代入して

$$x^{2} + (p - x)^{2} = 4 \Leftrightarrow 2x^{2} - 2px + p^{2} - 4 = 0$$
 ... 3

条件より、③の判別式 $\frac{D}{4} = p^2 - 2(p^2 - 4) = 0 \Leftrightarrow p^2 = 8$

p > 0より、 $p = 2\sqrt{2}$. これを③に代入

$$2x^2 - 4\sqrt{2}x + 4 = 0 \Leftrightarrow (x - \sqrt{2})^2 = 0$$
 $\therefore x = \sqrt{2}, \ y = \sqrt{2}$

以上より
$$p = 2\sqrt{2}$$
, $(x, y) = (\sqrt{2}, \sqrt{2})$ (答)

52 解. (1) 両辺に $x^3 + 1$ をかけて $1 = A(x^2 - x + 1) + (Bx + C)(x + 1)$

$$1 = (A+B)x^2 + (-A+B+C)x + A + C$$

係数を比較すると $\begin{cases} A+B=0 & \cdots ① \\ -A+B+C=0 & \cdots ② \\ A+C=1 & \cdots ③ \end{cases}$

よって ①, ③より $B=-\frac{1}{3}$, $C=\frac{2}{3}$ $\therefore A=\frac{1}{3}$, $B=-\frac{1}{3}$, $C=\frac{2}{3}$ (答)

(2) 両辺に $(x-1)^2(x+2)$ をかけると

$$4x^{2} - 3x + 3 = A(x+2) + B(x-1)(x+2) + C(x-1)^{2}$$

$$\therefore 4x^2 - 3x + 3 = (B+C)x^2 + (A+B-2C)x + 2A - 2B + C$$

(1)と同様にして、係数を比較して解くと $A = \frac{4}{3}, B = \frac{11}{9}, C = \frac{25}{9}$ (答)

53 解. (1) (i)
$$x-2 \ge 0$$
 のとき, つまり $x \ge 2$ のとき

$$x^{2} + x - 2 = 4 \Leftrightarrow (x+3)(x-2) = 0$$

$$x \ge 2 \downarrow 0 \quad x = 2$$

(ii) x-2 < 0 のとき, つまり x < 2 のとき

$$x^{2} - x + 2 = 4 \Leftrightarrow (x+1)(x-2) = 0$$
 $x < 2 \pm 0 \quad x = -1$

(i), (ii)より x = 2, -1 (答)

(2) (i)
$$x^2 + x - 6 \ge 0 \Leftrightarrow (x+3)(x-2) \ge 0$$
 $0 \ge 5$, $0 \ne 0$ $x \le -3$, $x \ge 2$...① $0 \ge 5$

$$x^2 + x - 6 \le x + 1 \Leftrightarrow x^2 - 7 \le 0$$
 $\therefore -\sqrt{7} \le x \le \sqrt{7}$ $\cdots \ge 0$

(1), (2)
$$\sharp$$
 b) $2 \le x \le \sqrt{7}$

(ii)
$$x^2 + x - 6 < 0 \Leftrightarrow (x+3)(x-2) < 0$$
 のとき、つまり $-3 < x < 2$ …③ のとき

$$-x^2 - x + 6 \le x + 1 \Leftrightarrow x^2 + 2x - 5 \ge 0$$
 $\therefore x \le -1 - \sqrt{6}, x \ge -1 + \sqrt{6}$... (4)

③, ④
$$\sharp$$
 り $-1 + \sqrt{6} \le x < 2$

(i), (ii) より
$$-1+\sqrt{6} \le x \le \sqrt{7}$$
 (答)

54 解.
$$z-2=\sqrt{3}i \Rightarrow (z-2)^2=-3 \Rightarrow z^2-4z+7=0$$

 $z^4-4z^3+7z^2=z^2(z^2-4z+7)=0$ ∴ 0 (答)

55 解.
$$z = a + bi(a, b)$$
 は実数) とおくと

$$z^{3} = (a+bi)^{3} = a^{3} + 3a^{2}bi - 3ab^{2} - b^{3}i = (a^{3} - 3ab^{2}) + (3a^{2}b - b^{3})i = i$$

複素数の相等より
$$\begin{cases} a^3 - 3ab^2 = a(a^2 - 3b^2) = 0 & \cdots \\ 3a^2b - b^3 = 1 & \cdots \end{aligned}$$

① より
$$a=0$$
 または $a^2=3b^2$ であるから

(i)
$$a=0$$
 のとき ②より $b^3=-1$. b は実数だから $b=-1$.

(ii)
$$a^2 = 3b^2$$
 のとき ②より $b^3 = \frac{1}{8}$. b は実数だから $b = \frac{1}{2}$.

$$\ \, \sharp \, \, \supset \, \subset a^2 = \frac{3}{4} \qquad \therefore a = \pm \frac{\sqrt{3}}{2}$$

以上より,
$$z = -i$$
, $\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$ (答)